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ohne unerlaubte fremde Hilfe und ausschließlich unter Verwendung der aufgeführten
Quellen und Hilfsmittel angefertigt habe.
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Abstract

In this thesis, we study transient (time-dependent) gas flow in natural gas networks with
a focus on passive gas networks. We compare different algorithms to approximate flow
and pressure values in a gas network.

A gas network consists of pipelines that deliver gas from suppliers to consumers. The
gas flow in a pipe can be described by the Euler Equations which are a set of nonlinear
partial differential equations. We use the so-called friction-dominated model to simplify
the gas flow equations and apply an implicit box scheme to derive a suitable discretization.

We compare different linearization methods to solve the resulting nonlinear system of
equations.

We introduce six known mixed-integer formulations for piecewise linear functions and
describe how to use these formulations to approximate the nonlinear functions in the gas
flow model.

Further, we develop an iterative method, to solve the pipe flow system. We call the
method “iterative velocity approximation”, and it is based on a linearization of the
momentum equation. We linearize the equation by fixing the absolute gas flow velocity.
We show convergence on single pipes.

We evaluate and compare the performance of generic nonlinear solvers, the piecewise
linear approximations and the iterative velocity approximation on nine different networks.
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1. Introduction

1.1. The Problem

Natural gas is among the most used energy sources in Germany. In the year 2016
approximately 24% of the final energy consumption was covered by natural gas (see
Table A.1 in Appendix A) As a consequence large amounts of natural gas have to be
transported from suppliers to consumers.

The gas that is transported flows through pipelines, and due to friction in the pipes, the
pressure drops. A gas network typically contains additional elements that can control the
flow in some way. For example, compressor machines are used to increase pressure, which
counteracts the pressure loss incurred by pipes. This kind of active elements introduces
discrete decisions into the network control. Typically you try to optimize the network
control w.r.t. some objective (e.g., fuel consumption of the compressor machines). This
kind of optimization is often called Transient Technical Optimization ([Moritz, 2007]
and [Ehrhardt and Steinbach, 2005]). Based on the state of the network and future
supply/demand values, the goal is to find an optimal network control, which serves as a
recommendation to human operators (so-called dispatchers), who can then adjust the
network control based on the recommendation from the optimization process. Due to
the inherently nonlinear nature of the gas flow, large mixed-integer nonlinear problems
need to be solved. Current solution approaches are not able to solve large-scale problems
(see [Ŕıos-Mercado and Borraz-Sánchez, 2015]).

To make the optimization problem manageable, we try to linearize the gas flow
constraints. By linearizing the problem, we can make use of powerful mixed-integer linear
programming solvers.

In this thesis, we want to compare different algorithms to calculate flow and pressure
values in a gas network. In contrast to stationary calculations, in which a constant
capacity is requested over an infinite amount of time, we take a look at a transient flow
problem. We are given a gas network, as well as, gas supply and demand values at entry
and exit points of the network, which are fixed over a specified time horizon. We then
want to compute the flow and pressure values at each node in the network for all time
points, s.t. the network can transport the specified amount of natural gas to satisfy all
given demands.

The intent is to create a linearization of the pipe flow that can be incorporated into
transient technical optimization. Therefore, we concentrate on pipe-only networks and
present and compare strategies to linearize the discretization of the so-called friction-
dominated pipe flow model (see [Domschke et al., 2017]).

In the second chapter, we introduce the notation and physical relations for gas flow in
networks. We present the Euler Equations which are a set of nonlinear partial differential
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1. Introduction

equations that describe gas flow in a pipe. We then deduce the friction-dominated
model for gas flow in pipelines and define the discretization that we use throughout the
thesis. The second chapter summarizes all mixed-integer formulations for piecewise linear
functions from [Vielma et al., 2010], and we explain how we can use these formulations
to approximate the nonlinear functions that occur in the discretization for gas flow. The
third chapter discusses an iterative method which we call iterative velocity approximation
for which we prove convergence on a single pipe. In Chapter 5 we test the convergence
properties of iterative velocity approximation on different networks and compare different
solution approaches for the gas flow system. The approaches include generic methods
as implemented by nonlinear solvers, as well as all of the piecewise linear formulations
from Chapter 3 and iterative velocity approximation introduced in Chapter 4. In the
last chapter, we classify and asses our results and discuss ideas for further research.

1.2. Literature Survey

Transient gas network optimization is an area of ongoing research. The corresponding
optimization problems are large mixed-integer nonlinear programs, and a number of
different solution approaches based on linearization of the underlying nonlinearities have
been developed.

Piecewise linear functions have already been proposed and used to approximate
nonlinear functions in transient calculations. For example, [Moritz, 2007] and [Correa-
Posada and Sánchez-Mart́ın, 2014] use mixed-integer formulation for piecewise linear
functions to approximate nonlinearities in the pipe flow and the compressor model. In
contrast to [Moritz, 2007], we use different formulations for piecewise linear functions,
and we use a different discretization of the pipe flow equation than both [Moritz, 2007]
and [Correa-Posada and Sánchez-Mart́ın, 2014].

[Burlacu et al., 2017b] propose a general iterative approach to solve MINLPs. They use
piecewise linear functions to create a relaxation that encloses the nonlinearity within a
given error bound. They use the relaxation to solve a mixed-integer problem to fix discrete
decisions in the network. The solution can then be used to refine the discretization of
the piecewise linear functions until some error bound is achieved. In contrast to their
method of adaptive refinement we do not use relaxations for the nonlinearities, we only
approximate the nonlinearities. Also, we do not refine the discretization. Instead, we
only work with a priori discretizations.

[van der Hoeven, 2004] and [Pratt and Wilson, 1984] present solution methods based
on an iterated solution of linear programs. They linearize the gas flow equations by fixing
the absolute flow value on a pipe. Our approach differs because instead of fixing the flow
value we fix the absolute velocity of the gas (which also involves pressure). Furthermore,
the focus of both [van der Hoeven, 2004] and [Pratt and Wilson, 1984] are stationary
calculations, whereas we solely deal with transient flows.
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2. Modeling Transient Gas Flow

The goal of this chapter is to discuss the different elements of a gas network and their
physical characteristics and mathematical models. We then define the appropriate models
that we use for computations throughout the rest of this thesis. The information is based
on [Domschke et al., 2017], [Fügenschuh et al., 2015] and [Moritz, 2007].

As we have already mentioned in the introduction, gas networks are used to distribute
natural gas. The distribution takes place between several entry points and exit points,
and the gas has to be transported via different network elements. The entry points add
gas to the network, and at exit points, gas is extracted. The most well-known network
element is the ordinary pipe as part of a bigger pipeline. The pipe is the main component
that we examine in this thesis. Before we talk about the details of modeling gas flow in
pipes we give a short overview of the most common network elements:

• Pipelines represent the major part of a gas network, they are used to connect
entries and exits of the network and can be considered the basic building block
of the network. Pipes can come in different shapes, but most of the transport
networks that we consider only contain pipes with a cylindrical shape, so similar
to [Fügenschuh et al., 2015] we only model straight cylindrical pipes. As we will
later see in greater detail, the length, diameter and the internal roughness of the
pipe have a significant influence on the gas flowing through it. Depending on these
parameters, pipes impose a pressure drop between their endpoints.

• Another element commonly found in gas networks is called resistor. These elements
are artificial constructs that represent different kinds of pressure loss due to a
diverse set of reasons (e.g., flow diversion). To account for complex pressure loss
phenomena, different parameters are estimated from experimental data.

• Short cuts are very short pipes that do not impose a pressure loss between the
start node and the end node.

• Valves are used to regulate flow between certain parts of the network. In our model,
a valve can be open or closed, i.e., enabling or disabling flow between two endpoints.
We neglect any friction inside a valve and thus assume the same pressure at both
endpoints if the valve is open.

• Control valves are devices relatively similar to valves, which are used as pressure
regulators between high-pressure and low-pressure parts of the network. Control
valves have an additional state (called “active”), in which the control valve is
partially opened, thus introducing a high pressure loss between both endpoints. In
contrast to a classic valve, control valves have a working direction.
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2. Modeling Transient Gas Flow

• Compressor machines are probably the most complicated of the network elements.
They serve the vital function to counter pressure loss incurred by the rest of the
network. Thus they are crucial to enable long-distance transport of gas. They are
active elements and can increase pressure in the flow direction, but they need some
energy to operate.

2.1. Network Structure and Element Coupling

We try to follow the notation from [Fügenschuh et al., 2015] and [Geißler et al., 2015],
but we have to adapt their notation to the transient case, i.e., we add an index for the
time to each of the variables.

In a gas network, the different network elements are joined and connected in some
way. Therefore gas networks can be modeled as directed graphs, which are represented
as G = (V,A), where V is the set of nodes and A is the set of arcs. We do not allow
self-loops, but parallel arcs are possible. Additionally, we define the incoming and the
outgoing arcs of a node u ∈ V as

δ+ (u) = {(v, u) ∈ A} ,
δ− (u) = {(u, v) ∈ A} .

The set of nodes is divided into three subsets

V+ , set of entry nodes (nodes that supply gas),

V0 , set of inner nodes (neither supply or demand),

V− , set of exit nodes (nodes that demand gas),

so the complete set of nodes is V = V+ ∪ V0 ∪ V−.
The set of arcs is also divided into subsets, one set for each of the network elements:

Api , set of pipes,

Ars , set of resistors,

Asc , set of short cuts,

Ava , set of valves,

Acv , set of control valves,

Acs , set of compressor stations.

The set of all arcs is then A = Api ∪Ars ∪Asc ∪Ava ∪Acv ∪Acs. Details on pipes and its
parameters can be found in Subsection 2.2.1 Additional information on how to integrate
the other network elements (valves, control valves, etc.) can be found in Subsection 2.2.2.

We want to model gas flow over a discrete time horizon T = {t0 < t1 < . . . < tn}. We
want to find flow and pressure values s.t. a given flow demand can be satisfied. The flow
demand is given as mass flow in the nodes for each of the timesteps. For some node
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2. Modeling Transient Gas Flow

u ∈ V and some time point ti ∈ T we denote the demand as qnomu,ti . For the different
types of nodes we restrict the values of the demand in the following way:

qnomu,ti


≥ 0, u ∈ V+
= 0, u ∈ V0
≤ 0, u ∈ V−

.

So in entry nodes, we introduce gas, in inner nodes, no gas can enter or exit the network,
and in exit nodes, gas is withdrawn from the network. These values serve as the boundary
conditions to the transient flow problem.

The flow in the network is transported through the different elements, so the mass flow
q in a connection a ∈ A \Api at time t is referred to as qa,t. For pipes, we have a different
mass flow at the inlet and the outlet, thus we define the inlet mass flow at a ∈ Api at
time t as qina,t and for the outlet, we use qouta,t . The pressure at a node u ∈ V at time t is
referred to as pu,t.

We assume that there are bounds for the flow on each network element, i.e.,

q
a
≤ qa,t ≤ qa, ∀t ∈ T . (2.1)

Each node in the network couples different incoming/outgoing network elements. At
some node v ∈ V , the pressure at the end of an element (for incoming elements) and the
pressure at the start of an element (for outgoing elements) need to be the same. So as a
consequence we only need a single pressure variable pv,t per node v ∈ V .

There are also limits on the pressure at each node u ∈ V :

p
u
≤ pu,t ≤ pu, ∀t ∈ T . (2.2)

At nodes, different network elements are connected, and therefore we introduce a cou-
pling condition for the network elements. Mass conservation results in a flow conservation
constraint so at each timestep t for the node u ∈ V we get:∑

a∈δ+(u)\Api

qa,t +
∑

a∈δ+(u)∩Api

qouta,t

−
∑

a∈δ−(u)\Api

qa,t −
∑

a∈δ−(u)∩Api

qina,t = qnomu,t , ∀t ∈ T .
(2.3)

Now that we have explained the network structure the next step is to describe the
physical behaviour and mathematical models in each of the network elements.

2.2. Models for Passive Elements

In this work we are mostly interested in passive subnetworks, i.e., we will not go into the
details of active elements. How we treat these active elements can be gathered from the
subsection 2.2.2.
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2. Modeling Transient Gas Flow

2.2.1. Pipe Flow Model

Gas flow in pipelines is a complex phenomenon, and accurate calculations depend on a lot
of different parameters and are computationally very expensive. As we are interested in
modeling large gas networks and therefore we need to find a way to simplify the calculations
to make them feasible for large-scale calculations. As part of the simplifications, we lose
accuracy of the result, and we need to make sure, that the simplifications are accurate
enough for our purposes. We will introduce a rather complex model, and step by step
simplify the model. These model simplifications are performed according to [Domschke
et al., 2017].

To describe the gas flow through a pipeline, there are different quantities of interest:
mass flow q, density ρ and velocity v of the gas as well as the pressure p at the endpoints
of a pipe. The shape and properties of the pipe itself also play a crucial role in the
calculation. To achieve the aforementioned simplifications we will only consider gas
flow through cylindrical pipes and model the flow only one-dimensional as opposed to
three-dimensional calculations in fluid-dynamics. Gas flow in pipes is modeled via the
so-called Euler Equations (2.4) - (2.6) which are a set of nonlinear partial differential
equations:

∂ρ

∂t
+
∂(ρv)

∂x
= 0, (2.4)

∂(ρv)

∂t
+
∂(p+ ρv2)

∂x
+ gρs+ λ

|v| v
2D

ρ = 0, (2.5)

∂

∂x

(
ρv

(
1

2
v2 + e

)
+ pv

)
+
∂

∂t

(
ρ

(
1

2
v2 + e

))
+
kw
D

(T − Tw) = 0.

(2.6)

Table 2.1 lists the parameters of the Euler Equations with short descriptions and
the standard unit for each parameter. Equation (2.4) is commonly referred to as the
continuity equation. Equation (2.5) is called the momentum equation. Equation (2.6)
describes energy conservation.

According to [Schewe et al., 2015] most pipes are buried underground, so the surround-
ing temperature only changes slowly. Additionally, the typical network contains gas
preheaters and coolers, so we assume to have a constant temperature in the pipelines.
As a consequence, we can simplify the Euler Equations. We can then drop the energy
conservation equation (2.6), and we get a simplification referred to as the isothermal
Euler Equations:

∂ρ

∂t
+
∂(ρv)

∂x
= 0, (2.7)

∂(ρv)

∂t
+
∂(p+ ρv2)

∂x
+ gρs+ λ

|v| v
2D

ρ = 0. (2.8)

As additional constraints, we have the state equation for real gases

p = ρRsTz(p, T ), (2.9)
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2. Modeling Transient Gas Flow

Parameter Description Unit

p pressure of gas Pa
q mass flow kg/s
ρ density of gas kg/m3

v velocity of gas m/s
D diameter of pipe m
A cross sectional area of pipe m2

g gravitational acceleration m/s2

s slope of pipe 1
λ friction factor 1
z compressibility factor 1
e internal energy J
T gas temperature K
Tw wall temperature of pipe K
kw heat transfer coefficient J/(m2K)

Table 2.1.: Physical Quantities used in the Euler Equations

and the definition of the mass flow, which describes the mass flow in terms of gas velocity
and density:

q = Aρv. (2.10)

The compressibility factor z(p, T ) is dependent on the gas composition, pressure, as
well as temperature and there are different approximative formulas available. The most
well-known is the formula by Papay (see [Papay, 1968] and [Saleh, 2002]) and an equation
from the American Gas Association (AGA) (see [Králik et al., 1988]). In our calculations,
we always assume a constant compressibility factor. For a constant compressibility factor,
the speed of sound in gas c is given as

c =

√
p

ρ
.

The gas flow velocity in large-scale networks is relatively small compared to the speed
of sound, so for the assumption v � c we can also assume that v2/c2 ≈ 0 and thus

p+ ρv2 = p

(
1 +

v2

c2

)
≈ p.

Further, we assume that the term ∂(ρv)
∂t is small and hence neglect it. This results in the

so-called friction dominated model from [Brouwer et al., 2011]

∂ρ

∂t
+
∂(ρv)

∂x
= 0,

∂p

∂x
+ gρs+ λ

|v| v
2D

ρ = 0.
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2. Modeling Transient Gas Flow

We also assume that the friction coefficient lambda is constant and to calculate the
coefficient, we use the formula from [Nikuradse, 1950]

λ =

(
2 log10

(
D

k

)
+ 1.138

)−2
,

where D is the diameter and k is the integral roughness of the pipe.
In our case, the values we are interested in (and which we have measurements for)

are the pressure as well as the flow along a pipe, so we use the equation (2.10) and the
state equation (2.9) in order to reformulate the friction dominated model in terms of the
pressure p and the mass flow q.

A

RsTz

∂p

∂t
+
∂q

∂x
= 0, (2.11)

∂p

∂x
+
λRsTz

2DA2

|q| q
p

+
gs

RsTz
p = 0. (2.12)

These two equations (2.11) and (2.12) will serve as the basis for the solution strategies.
As we are still dealing with a set of nonlinear PDEs, we discretize the system, so that
we can work with solutions in a finite-dimensional vector space as opposed to general
function spaces.

To discretize the equations, we need to discretize in the two dimensions time t and
space x. For the discretization, we consider a pipe of length L from start time t0 to end
time t1 > t0. We discretize via an implicit box scheme from [Domschke et al., 2011]. We
start with equation (2.11), where we integrate by space and time. Remaining integrals
are approximated by the trapezoid rule for space and the right rectangle rule for the
time integral. Thus the result is:∫ t1

t0

∫ L

0

∂p

∂t
+
RsTz

A

∂q

∂x
dxdt

=

∫ L

0
(px,t1 − px,t0)dx+

∫ t1

t0

RsTz

A
(qL,t − q0,t)dt

=
L

2

((
p0,t1 − p0,t0

)
+
(
pL,t1 − pL,t0

))
+
RsTz(t1 − t0)

A
(qL,t1 − q0,t1).

(2.13)

In the second equation there is only a derivative in space, so we only need to integrate
via space. We get: ∫ L

0

∂p

∂x
+
λRsTz

2DA2

|q| q
p

+
gs

RsTz
p dx

= pL,t − p0,t +
λRsTz

2DA2

L

2

(
|q0,t| q0,t
p0,t

+
|qL,t| qL,t
pL,t

)
+

gsL

2RsTz
(p0,t + pL,t).

(2.14)
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2. Modeling Transient Gas Flow

In a gas network several pipes are coupled, so for each pipe a = (u, v) ∈ Api we
introduce an additional index for its parameters. When we then formulate (2.13) and
(2.14) in terms of inflow and outflow for some time point ti ∈ T , we end up with the
following system

pu,ti − pu,ti−1 + pv,ti − pv,ti−1

2RsTz(ti − ti−1)
Aa

(qouta, ti − qina,ti) = 0, (2.15)(
1 +

gsLa
2RsTz

)
pv,ti −

(
1− gsLa

2RsTz

)
pu,ti

+
λRsTzLa

4DaA2
a

(∣∣qina,ti∣∣ qina,ti
pu,ti

+

∣∣qouta,ti

∣∣ qouta,ti

pv,ti

)
= 0. (2.16)

We will call (2.15) the discretized continuity equation and (2.16) the discretized momen-
tum equation. The system of nonlinear equations consisting of the discretized continuity
and momentum equation will be the main focus of this thesis. We try to find ways to
solve the system. This is especially hard since the system contains the nonlinear friction
term

f(p, q) =
λRsTz

2DA2

|q| q
p
. (2.17)

We explore different ways to approximate the solution in chapters 3 and 4.

2.2.2. Dealing with Networks that Contain Non-Pipe Elements

We only want to consider passive networks. Thus we replace all elements with short
cuts. Short cuts are easily modeled by adding a constraint that enforces equality of the
pressure at both endpoints. We do not need to add the Euler Equations. Instead, for a
short cut from some node u to another node v, we add the constraint

pu = pv. (2.18)

For the active elements, this makes sense, because open valves and open control valves,
as well as compressor stations in bypass mode show similar behaviour to short cuts, i.e.,
no pressure loss between endpoints.

With this modification, we can then examine our algorithms on networks that contain
elements that are different to pipes, e.g., the GasLib networks (see Appendix B) contain
active elements.
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3. Modeling Piecewise Linear Functions

As we have seen in the previous section 2.2.1 about pipe flow models, the discretized
system for gas flow in pipelines contains nonlinear terms in the pressure p and the
flow q. These nonlinearities prevent us from using linear programming/mixed-integer
programming techniques to optimize the network control.

Our goal is to approximate the nonlinearities in a way that is compatible with mixed-
integer programming (MIP), so we can use powerful MIP-solvers to obtain a solution.
One idea for such an approximation is to use piecewise linear functions. By discretizing
the domain of a nonlinear function, we can then interpolate the discretized points with a
piecewise linear function. As we will see, piecewise linear functions can be modeled by
using mixed integer constraints. This property helps us to incorporate (approximations
of) the nonlinear constraints into a MIP model. The goal of this section is to explore
different MIP formulations for piecewise linear functions. [Vielma et al., 2010] contains
an excellent overview and comparison of some models that are applicable to multivariate
functions. We list these models and give a short explanation for each model and its
corresponding formulation. We try to follow the naming convention from [Vielma et al.,
2010]. Later we want to compare the performance of the different models when we use
them to approximate the pipe flow system.

3.1. Introduction to Piecewise Linear Functions

Definition 3.1.1 (Continuous Piecewise Linear Function [Vielma et al., 2010]). Let
Ω ⊆ Rn be a compact set. A continuous function f : Ω → R is a piecewise linear
function (short: PWL) if and only if there exist a finite family of polytopes P, vectors
{mP }P∈P ⊆ Rn and numbers {cP }P∈P ⊆ R such that Ω =

⋃
P∈P P and

f(x) :=
{
mPx+ cP x ∈ P ∀P ∈ P.

In the one-dimensional case, a piecewise linear function is uniquely defined via its
breakpoints and their function values, i.e., the function value at each point can be inferred
from the surrounding breakpoints. For functions with at least two variables, this is not
necessarily true anymore, so the actual triangulation is essential, example 3.1.2 highlights
this property. Especially if you are trying to approximate a nonlinear function, the choice
of your simplices has a large influence on the accuracy of the approximation. Figure 3.1
presents an example of a univariate piecewise function.
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3. Modeling Piecewise Linear Functions

Example 3.1.2. Let us consider some function

f : [0, 1]2 → R
(x1, x2) 7→ 2x21 + x1x2 + x22

that we want to approximate with a PWL function. For the discretization, we choose
some points

P = {(0, 0), (0, 1), (1, 0), (1, 1)}

with respective function values

f(0, 0) = 0,

f(0, 1) = 1,

f(1, 0) = 2,

f(1, 1) = 4.

For P there exist two different triangulations:

P1 = {{(0, 0), (0, 1), (1, 0)} , {(0, 1), (1, 0), (1, 1)}} ,
P2 = {{(0, 0), (1, 0), (1, 1)} , {(0, 0), (0, 1), (1, 1)}} .

Then for P1, we can define a PWL function

f1(x) :=

{
(2, 1) · x x ∈ conv {(0, 0), (0, 1), (1, 0)}
(3, 2) · x− 1 x ∈ conv {(0, 1), (1, 0), (1, 1)}

,

and for P we define

f2(x) :=

{
(2, 2) · x x ∈ conv {(0, 0), (1, 0), (1, 1)}
(3, 1) · x x ∈ conv {(0, 0), (0, 1), (1, 1)}

,

We have equality f(x) = f1(x) = f2(x) for all points x ∈ P , but

f1(0.5, 0.5) = 1.5 6= 2 = f2(0.5, 0.5).

We will assume that the domain Ω ⊂ Rn is given via a triangulation (i.e., each polytope
is a simplex) P, i.e., Ω =

⋃
P∈P P . V(P) is the set of the vertices of all polytopes in

P. The goal is to model a piecewise linear function f : Ω → R as a MIP. In the MIP
formulations, we always denote the input of the function as x ∈ Ω, and the output f(x)
is represented by the variable z ∈ R.
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3. Modeling Piecewise Linear Functions

f(x)

x
x1 x2 x3

Figure 3.1.: Example of a Univariate Piecewise Linear Function

3.2. Disaggregated Convex Combination Models (DCC)

Convex combination models are based on the fact, that each point in a polytope is a convex
combination of the vertices of the polytope. There are several different formulations
based on the idea. So in the most basic model, binary decision variables yP ∈ {0, 1}
are introduced for each polytope P ∈ P, to decide in which polytope the point x is
located. Additionally, for each v ∈ P , there are continuous variables λP,v ∈ [0, 1] that
represent the coefficient of v in the convex combination of x. The model we introduce
is called disaggregated because even though a vertex can be part of several polytopes,
there is a separate coefficient for each of the polytopes. As we will later see, there is also
a formulation that only uses one continuous variable per vertex. The single variable case
has appeared in [Meyer, 1976], and the multivariable case was developed in [Jeroslow
and Lowe, 1984], [Lowe, 1984] and [Jeroslow, 1987]. The multivariable case describes a
disjoint union of polyhedra. The MIP formulation is given by the constraints (3.1)-(3.6).
We abbreviate the model (3.1)-(3.6) with DCC.
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3. Modeling Piecewise Linear Functions

∑
P∈P

∑
v∈V(P )

λP,vf(v) = z, (3.1)

∑
P∈P

∑
v∈V(P )

λP,vv = x, (3.2)

∑
v∈V(P )

λP,v = yP ∀P ∈ P, (3.3)

∑
P∈P

yP = 1, (3.4)

λP,v ≥ 0 ∀P ∈ P ∀v ∈ V(P ), (3.5)

yP ∈ {0, 1} ∀P ∈ P. (3.6)

The constraint (3.1) gives the output variable z as the convex combination of the function
values of the vertices in the discretization. (3.2) states that the input variable x needs to
be represented as a convex combination of the vertices. Constraint (3.4) states that only
a single polytope can be chosen. (3.3) and (3.5) together enforce the convex combination
property.

3.2.1. The Logarithmic Disaggregated Convex Combination Model (DLOG)

Similar to the previous model, this model is based on a disaggregated convex combination
of the vertices in each polytope. The main difference in this model is that the number
of binary variables is reduced to a number asymptotically logarithmic in the number of
polytopes. This is achieved by identifying each polytope with a binary vector, where the
corresponding mapping is

B : P → {0, 1}dlog2 |P|e .

We use the following definitions in the formulation:

P0(B, l) = {P ∈ P | B(P )l = 0} ,
P+(B, l) = {P ∈ P | B(P )l = 1} ,

L(P) = {1, . . . , dlog2 |P|e} .

The set P0(B, l) is the set of polytopes P ∈ P that are mapped by B to a binary vector
in which the l-th coordinate is 0. The set P+(B, l) is the complement, i.e., it consists of
the polytopes that have a 1 in the l-th coordinate. L is the index set for the coordinates
of the binary vectors.

For example, we can number the polytopes
{
P1, . . . , P|P|

}
= P. Then an example for

a mapping B could map Pi to the binary representation of i. This formulation has been
developed in [Vielma and Nemhauser, 2008]. A MIP formulation for the model is given
by (3.7)-(3.13) We abbreviate the model as DLOG.
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∑
P∈P

∑
v∈V(P )

λP,vf(v) = z, (3.7)

∑
P∈P

∑
v∈V(P )

λP,vv = x, (3.8)

∑
v∈V(P )

λP,v = 1, (3.9)

∑
P∈P+(B,l)

∑
v∈V(P )

λP,v ≤ yl ∀l ∈ L(P), (3.10)

∑
P∈P0(B,l)

∑
v∈V(P )

λP,v ≤ (1− yl) ∀l ∈ L(P), (3.11)

λP,v ≥ 0 ∀P ∈ P, ∀v ∈ V(P ), (3.12)

yl ∈ {0, 1} ∀l ∈ L(P). (3.13)

Constraint (3.7) gives the value of the PWL function as a convex combination of the
function values in the vertices of the discretization. Constraint (3.8) represents the
function input as a convex combination of the vertices of the discretization. (3.9) and
(3.12) enforce that the coefficients form a convex combination. A polytope Pi can be
chosen if for B(Pi) = (b1, . . . , b|P|) the variable values of the binary variables are set
to y1 = b1, . . . , y|P| = b|P|. This is enforced by the constraints (3.10) and (3.11). As a
consequence, a polytope P ∈ P is selected if for all l ∈ L(P) the choice variables yl are
set to the l-th coordinate of B(P ).

3.3. Convex Combination Models (CC)

Similar to DCC and DLOG, the following two models are based on convex combinations.
These models have been studied extensively, among others in [Lowe, 1984], [Jeroslow and
Lowe, 1984] and in [Wilson, 1998]. The difference to DCC is, that instead of having one
variable for each combination of polytopes and their vertices we only have one coefficient
variable λv for each vertex v ∈ V(P). For this model, we also introduce decision variables
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yP ∈ {0, 1} for each polytope P ∈ P. We refer to the model (3.14)-(3.20) as CC.∑
v∈V(P)

λvf(v) = z, (3.14)

∑
v∈V(P)

λvv = x, (3.15)

∑
v∈V(P)

λv = 1, (3.16)

∑
P∈P

yP = 1, (3.17)

λv ≤
∑

P∈P(v)

yP ∀v ∈ V(P), (3.18)

λv ≥ 0 ∀v ∈ V(P), (3.19)

yP ∈ {0, 1} ∀P ∈ P. (3.20)

Similar to DCC and DLOG, constraint (3.14) describes the output of the PWL function
as a convex combination of the value in the vertices. Constraint (3.15) represents the
input x as a convex combination of vertices. Constraints (3.16) and (3.19) enforce that
the coefficients λv are coefficients of a convex combination. Due to the vertex variables
being aggregated, constraint (3.18) is needed, so only coefficients of vertices in the chosen
polytope can be nonzero. Constraint (3.17) states that only one polytope can be chosen.

3.3.1. The Logarithmic Convex Combination Model (CCLOG)

The following model is the most complex one. The idea is based on the CC model, but
similar to the DLOG model there is a trick to reduce the number of decision variables.
The idea is to formulate a binary branching scheme for the coefficient variables. A
complete description and further details are available in [Vielma and Nemhauser, 2008].
This model seems to outperform all the other models we tested. This observation matches
the results from [Vielma et al., 2010]. Unfortunately, this model can only be used with
certain types of triangulations (see definition 3.3.2), but for our purpose, this is not
relevant, because we can easily discretize our domain according to given constraints.

Before we can formulate the model, we need to introduce the notion of a binary
branching scheme.

Definition 3.3.1 (Binary Branching Scheme, [Vielma et al., 2010]). A binary branching
scheme is a family of bipartitions {Ls, Rs} of the vertices V(P) indexed by a finite set
S. Additionally the branching scheme needs to fulfill that for every P ∈ P we have
V (P ) =

⋂
s∈S(V(P) \ Ts), where Ts = Ls or Ts = Rs for each s ∈ S.

The constraints (3.21)-(3.27) define the CCLOG model. Now for a given binary
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3. Modeling Piecewise Linear Functions

branching scheme {Ls, Rs}s∈S , we can define the model:∑
v∈V(P)

λvf(v) = z, (3.21)

∑
v∈V(P)

λvv = x, (3.22)

∑
v∈V(P)

λv = 1, (3.23)

∑
v∈Ls

λv ≤ ys ∀s ∈ S, (3.24)

∑
v∈Rs

λv ≤ (1− ys) ∀s ∈ S, (3.25)

λv ≥ 0 ∀v ∈ V(P), (3.26)

ys ∈ {0, 1} ∀s ∈ S. (3.27)

The choice of a binary branching scheme is crucial to the size of the formulation. To
achieve a logarithmic number of variables, we need to find a branching scheme with a
logarithmic number of partitions. [Vielma and Nemhauser, 2011] present such a branching
scheme, which is based on the so-called J1 triangulation.

Definition 3.3.2 (“Union Jack”/J1 Triangulation). The J1 triangulation is defined on
D = [0,K]n where K ∈ N is an even number. The vertices of J1 are given via the set
V = {0, . . . ,K}n. Let V0 = {v ∈ V | ∀i ∈ {1, . . . , n} : vi is odd } be the set of vertices
with coordinates that are all odd, Sn be the set of permutations on n elements, and ei ∈ Rn
the i-th unit vector. For each element (v0, π, s) ∈ V 0×Sn×{−1, 1}n we define j1(v0, π, s)
as the simplex with the vertices {yi | 0 ≤ i ≤ n} where y0 = v0 and yi = yi−1 + sπ(i)eπ(i).
The triangulation is then given by

P =
{
j1(v0, π, s) | (v0, π, s) ∈ V 0 × Sn × {−1, 1}n

}
.

Examples of the J1 triangulation can be seen in figures 3.2 and 3.3.
Now let us gather some insights into the structure of J1 triangulations. First, we

realize, that we do not have to restrict ourselves to a discretization of [0,K]n, but J1 can
be generalized to other domains, as well.

Remark 3.3.3. A domain

Ω = [a1, b1]× . . .× [an, bn]

with discretizations
Di =

{
ai = p0i < p1i < . . . < pKi = bi

}
can be discretized via D = D1× . . .×Dn in the same way as the standard J1 triangulation
from 3.1.1 using the bijection

π : D → [0,K]n

(pk11 , . . . , p
kn
n ) 7→ (k1, . . . , kn).
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0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

Figure 3.2.: Union-Jack triangulation of D = [0, 2]2

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5

Figure 3.3.: Union-Jack triangulation of D = [0,
√

6]2 with discretizations{
0, 1,
√

2,
√

3, 2,
√

5,
√

6
}

using Remark 3.3.3
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3. Modeling Piecewise Linear Functions

A J1 triangulation yields a binary branching scheme with a logarithmic number of
bipartitions (i.e., the set S has a size logarithmic in the size of the triangulation).

Remark 3.3.4. Let P be a J1 triangulation of [0,K]n. Let (Gk)Kk=1 ⊂ {0, 1}
dlog2(K)e be

a Gray binary code (see [Knuth, 2011]), i.e., a set of binary vectors s.t. Gk and Gk+1

differ in at most one coordinate. Then we define the set

O(l, b) :=
{
k ∈ {0, . . . ,K} | (k = 0 ∨Gkl = b) ∧ (k = K ∨Gk+1

l = b)
}
.

Let
S1 := {1, . . . , n} × {1, . . . , dlog2(K)e} ,

and for (s1, s2) ∈ S1 define

L(s1, s2) := {v ∈ V(P) | vs1 ∈ O(s2, 1)} ,
R(s1, s2) := {v ∈ V(P) | vs1 ∈ O(s2, 0)} .

Also, let
S2 := {(s1, s2) | s1, s2 ∈ {1, . . . , n} : s1 < s2} ,

and for (s1, s2) ∈ S2 define

L(s1, s2) := {v ∈ V(P) | vs1 is even ∧ vs2 is odd } ,
R(s1, s2) := {v ∈ V(P) | vs1 is odd ∧ vs2 is even } .

Then {Ls, Rs}s∈S1∪S2
is a binary branching scheme for P.

Proof. See [Vielma and Nemhauser, 2011] and [Vielma et al., 2010].

As a consequence with the branching scheme of remark 3.3.4, we can encode a piecewise
linear function with a logarithmic number of binary variables.

3.4. Multiple Choice Model (MC)

The multiple choice model is also a very intuitive model. The idea is that for each
polytope of the triangulation, we introduce a decision variable yP ∈ {0, 1} and we add
the linear inequalities that describe the polytope P ∈ P. In contrast to the convex
combination methods where we use the vertex representation of a polytope, here we use
the half-space representation. The model has been studied in [Jeroslow and Lowe, 1984]
and [Lowe, 1984]. Now, for any polytope P ∈ P we assume the following half-space
representation:

P = {xP ∈ Rn | APxP ≤ bP } .
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With this the MC model can then be given as:∑
P∈P

(mPxP + cP yp) = z, (3.28)∑
P∈P

xP = x, (3.29)

APxP ≤ yP bP ∀P ∈ P, (3.30)∑
P∈P

yP = 1 ∀P ∈ P, (3.31)

yP ∈ {0, 1} ∀P ∈ P. (3.32)

Constraint (3.28) describes the value of the PWL function as the function value of
the linear function on the chosen polytope (i.e., the restriction of f onto the polytope).
Constraint (3.30) achieves two things, first if some polytope P ∈ P is chosen (i.e., yP = 1),
then xP is restricted to be a point in P . The second property is that for all the other
polytopes P ′ ∈ P, P ′ 6= P that are not chosen AP ′xP ′ ≤ 0 holds. This implies that xP ′

is restricted to the null vector. If there were some solution yP ′ , P
′ would not be bounded,

because then for all δ > 0, AP ′δyP ′ ≤ bP . This is a contradiction to Ω being bounded
(and thus also P ′ being bounded). Only one polytope can be chosen due to constraint
(3.31).

3.5. Incremental Model (INC)

The so-called incremental model (also delta-method) has first occurred for the special
case of one-dimensional functions in [Markowitz and Manne, 1957]. It has then been
further extended and developed in [Wilson, 1998] to represent functions with multivariate
input.

This formulation imposes an additional constraint on the triangulation of the domain.

Definition 3.5.1 (Ordering Properties for Triangulation). The triangulation P needs to
have the following properties, to be compatible with the incremental model for piecewise
linear functions:

1. The simplices in P can be ordered as P1, . . . , P|P| s.t. two consecutive simplices
always share a point, i.e., Pi ∩ Pi+1 6= ∅.

2. The vertices V (Pi) =
{
v0i , . . . , v

|V (Pi)|−1
i

}
of each simplex Pi can be ordered s.t. the

last vertex of Pi is the first vertex of Pi+1, i.e.,

v
|V (Pi)|−1
i = v0i+1.

Now we want to show that the J1 triangulation has the desired properties. We start
with an insight into the structure of the J1 triangulation and realize that a large J1
triangulation consists of smaller J1 triangulations.
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Remark 3.5.2. A J1 triangulation of [0,K]n can be described as the union of J1 trian-
gulations of [0, 2]n that are shifted around the odd vertices V0.

Proof. This follows immediately from the definition of J1. For any fixed v0 ∈ V0, we can
see that for all (π, s) ∈ Sn × {−1, 1}n

j1(v0, π, s) = v0 +

{
k∑
i=1

sπ(i)ei | k ∈ {0, . . . , n}

}
.

In particular J1 of [0, 2]n is

J1([0, 2]n) = (1, . . . , 1) +

{{
k∑
i=1

sπ(i)ei | k ∈ {0, . . . , n}

}
| (π, s) ∈ Sn × {−1, 1}n

}
,

and

{j1(v0, π, s) | (π, s) ∈ Sn × {−1, 1}n}

=

{
v0 +

{
k∑
i=1

sπ(i)ei | k ∈ {0, . . . , n}

}
| (π, s) ∈ Sn × {−1, 1}n

}
=(v0 − (1, . . . , 1))

+ (1, . . . , 1) +

{{
k∑
i=1

sπ(i)ei | k ∈ {0, . . . , n}

}
| (π, s) ∈ Sn × {−1, 1}n

}
︸ ︷︷ ︸

J1([0,2]n)

.

With the additional information on the structure of the J1 triangulation, we can give
an explicit algorithm to order the simplices according to the ordering properties from
Definition 3.5.1.

Lemma 3.5.3. The two-dimensional J1 triangulation fulfills the ordering properties from
Definition 3.5.1.

Proof. We give an explicit construction of the ordering of J1. From remark 3.5.2, that
J1 on [0,K2] consists of J1 on [0, 2]2 around the odd vertices (V0 in definition 3.1.1).
This means that if we find a path going from sub-triangulation to sub-triangulation that
already has the ordering properties (1 and 2), we have constructed an ordering of the
complete triangulation. A traversal of the complete triangulation can be achieved with
the vertex sequence given in figure 3.4. To achieve the pattern defined by figure 3.4, we
only need to show that in J1([0, 2]2) we can go from the bottom left corner to the top left
corner and from the bottom left corner to the upper right corner while abiding by the
ordering properties. An explicit construction is given for these two cases in Figures A.1
and A.2 in Appendix A. The numbers at the points denote their absolute order in the
sub-triangulation, and the numbers in the triangles correspond to the order in which the
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J1([0, 2]2)

J1([0, 2]2)

...

J1([0, 2]2)

J1([0, 2]2)

J1([0, 2]2)

...

J1([0, 2]2)

. . .

. . .

. . .

. . .

J1([0, 2]2)

J1([0, 2]2)

...

J1([0, 2]2)

Figure 3.4.: Path through J1 Triangulation with n2 sub-triangulations

triangles are visited. The order for the sub-triangulation is then given via the triangles
induced by the vertices (1, 2, 3), (3, 4, 5), (5, 6, 7), (7, 8, 9), (9, 10, 11), (11, 12, 13),
(13, 14, 15), (15, 16, 17). The definition of these triangles directly implicates that the
ordering property holds for the given triangulation.

f(v01) +

|P|∑
i=1

|V (Pi)|−1∑
j=1

δji (f(vji )− f(v0i )) = z, (3.33)

v01 +

|P|∑
i=1

|V (Pi)|−1∑
j=1

δji (v
j
i − v

0
i ) = x, (3.34)

|V (P1)|−1∑
j=1

δj1 ≤ 1, (3.35)

yi ≤ δ|V (Pi)|−1
i , (3.36)

|V (Pi+1)|−1∑
j=1

δji+1 ≤ yi, (3.37)

δji ≥ 0 ∀i ∈ {1, . . . , |P|} , (3.38)

∀j ∈ {1, . . . , |V (Ti)| − 1}
yi ∈ {0, 1} ∀i ∈ {1, . . . , |P| − 1} . (3.39)
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Model Constraints Additional Variables Binaries

DCC n+ |P|+ 2 |P|+
∑

P∈P |V (P )| |P|
DLOG n+ 2dlog2 |P|e+ 2 2dlog2 |P|e+

∑
P∈P |V (P )| 2dlog2(|P|)e

CC n+ 3 + |V(P)| |V(P)|+ |P| |P|
CCLOG n+ 2 + 2 |S| |V(P)|+ |S| |S|
MC n+ 2 +

∑
P∈P F (P ) (n+ 1) |P| |P|

INC 1 + 2 |P| |P| − 1 +
∑

P∈P(|V (P )| − 1) |P| − 1

Table 3.1.: Number of variables and constraints for the different piecewise linear models
[Vielma et al., 2010, Table 1]

3.6. Replacing the Friction Term

This section is supposed to give a short explanation on how to use piecewise linear
formulations described in this chapter to approximate the friction term (2.17) for a single
pipe a = (u, v) for some timepoint ti ∈ T . There are two different friction terms in the
discretized momentum equation (2.16). We replace both terms with the variables f ina,ti ,
and fouta,ti . This gives us a new momentum equation(

1 +
gsLa

2RsTz

)
pv,ti −

(
1− gsLa

2RsTz

)
pu,ti + f ina,ti + fouta,ti = 0. (3.40)

Then let Dpu =
{
p
u

= p1, . . . , pk = pu

}
be a discretization of the pressure domain for

the node u, Dpv =
{
p
v

= p1, . . . , pk = pv

}
be a discretization of the pressure domain

for the node v, and Dqa =
{
q
a

= q1, . . . , qk = qa

}
be a discretization of the flow domain

for the pipe a. Now P in needs to be a triangulation for the set Dpu × Dqa and Pout
needs to be a triangulation for the set Dpv ×Dqa . The linear functions that compose the
PWL function are then defined by the values of the friction term on the vertices of each
polytope in the domain discretizations.

Then for some type of PWL formulation (e.g. CCLOG) we add constraints with output
variable f ina,ti , input variables pu,ti and qina,ti with the discretization P in, and another set of
constraints with output variable fouta,ti , input variables pv,ti and qouta,ti with the discretization
Pout.
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A common approach to solve nonlinear systems, is to find linearizations of the system (see
for example [Kelley, 1995]) and successively solve the resulting linear systems. Newton’s
method is a well-known example of such an algorithm.

In this chapter, we will explore a specialized linearization approach for the discretized
friction dominated model (2.15)-(2.16) on pipe only networks, i.e., G = (V,Api). We
are trying to find approximations of the gas velocity which then yields a linear system.
The idea is based on [Hennings, 2018]. We develop an iterative method and can show
convergence on a single pipe under certain conditions on the parameters of the pipe and
the flow scenario.

4.1. Formulating the Iterative Method

From the physical relations (2.9) and (2.10) for gas we infer that the gas velocity is
proportional to the flow q divided by the pressure p:

v =
RsTz

A

q

p
.

By examining the friction term f(p, q) = λRsTz
2DA2

|q|q
p we observe that we can substitute

the velocity term. Resulting in the following expression

f̂(v, q) =
λ

2DA
|v| q.

The function f̂ is linear in q if we assume the velocity v to be constant. Thus by replacing
the friction term f(p, q) in the discretized momentum equation (2.16) with f(vC , q) for
some fixed velocity vC , only a linear system remains. [Hennings, 2018] suggests, that this
approach only works as a very rough approximation and is especially unfit for situations
in which the flow direction on a pipe changes. Still, this approach has several advantages:
We can linearize the equations in a very natural way, and we get rid of the absolute value,
which is not differentiable in 0. By fixing the absolute velocity, we can also preserve
symmetry and the property that for zero flow on a pipe no friction is introduced.

Even though the results for a constant velocity estimate in the friction term are mixed,
this has spawned the idea to approximate the velocity by solving the system (2.15)-(2.16),
successively. In each step, we then update the absolute velocity with flow and pressure
values from the previous iteration and solve again. We want to highlight, that in each
iteration we solve (2.15)-(2.16) for all timesteps and then update the velocity (for all
timesteps) and solve the updated (2.15)-(2.16) again.
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4. Iterative Velocity Approximation

For some pipe a = (u, v) ∈ Api the idea is to start with some initial guess on the inflow

(qina,ti)
(0), outflow (qouta,ti)

(0) and pressure p
(0)
u,ti

and p
(0)
v,ti

. Then for the k-th iteration we fix
the velocity for all timesteps to a value calculated in the previous iteration. This results
in the following system for k > 0:

p
(k)
u,ti
− p(k)u,ti−1

+ p
(k)
v,ti
− p(k)v,ti−1

+
2RsTz∆t

LA

(
(qina,ti)

(k) − (qouta,ti)
(k)
)

= 0 ∀i = 1, . . . , n, (4.1)(
gsL

2RsTz
+ 1

)
p
(k)
v,ti

+

(
gsL

2RsTz
− 1

)
p
(k)
u,ti

+
λRsTzLa

4DaA2
a

(∣∣(qina,ti)(k−1)∣∣
p
(k−1)
u,ti

(qina,ti)
(k)

+

∣∣(qouta,ti)
(k−1)∣∣

p
(k−1)
v,ti

(qouta,ti)
(k)

)
= 0 ∀i = 1, . . . , n. (4.2)

A single iteration of the algorithm described above is expressed in algorithm 1.

Algorithm 1: Iterative Velocity Approximation

Data: A pipe-only network G = (V,Api)
Values from previous iteration:

p
(k−1)
u,ti

∀u ∈ V, ∀ti ∈ {t0, . . . , tn} ,

(qina,ti)
(k−1) and (qouta,ti)

(k−1) ∀a ∈ Api, ∀ti ∈ {t0, . . . , tn} .

Result: solution in the k-th iteration:

p
(k)
u,ti

∀u ∈ V, ∀ti ∈ {t0, . . . , tn} ,

(qina,ti)
(k) and (qouta,ti)

(k) ∀a ∈ Api, ∀ti ∈ {t0, . . . , tn} .

Solve the linear system consisting of the equations (4.1), (4.2) and (2.3) for p
(k)
u,ti

,

(qina,ti)
(k), (qouta,ti)

(k) and return the result.

Now we want to explore the theoretical properties of Algorithm 1.

4.2. Convergence Properties on a Single Pipe

In this section we want to prove convergence of the iterative method resulting from
Algorithm 1. We restrict the analysis to networks that consist of a single pipe between
to boundary nodes. We can prove convergence under some conditions on the pipe and
the corresponding transient scenario.
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4. Iterative Velocity Approximation

If we only look at a single pipe a = (u, v) ∈ Api between the boundary nodes u
and v, there are no coupling conditions between other network elements, i.e., the flow
conservation condition (2.3) disappears.

As a consequence, the inflow into a is always equal to the fixed demand at u and the
outflow is equal to the fixed demand at v, i.e.,

qina,ti = qnomu,ti ∀i = 1, . . . , n,

qouta,ti = qnomv,ti ∀i = 1, . . . , n.

So the system (2.15)-(2.16) reduces to

pu,ti + pv,ti − pu,ti−1 − pv,ti−1

+
2RsTz(ti − ti−1)

LaAa
(qnomv,ti − q

nom
u,ti )

= 0 ∀i = 1, . . . , n, (4.3)

(
1 +

gsaLa
2RsTz

)
pv,ti −

(
1− gsaLa

2RsTz

)
pu,ti

+
λaRsTzLa

4DaA2
a

(∣∣qnomu,ti

∣∣ qnomu,ti

pu,ti
+

∣∣qnomv,ti

∣∣ qnomv,ti

pv,ti

) = 0 ∀i = 1, . . . , n. (4.4)

By performing a series of row additions, we can even give a simpler description of the
nonlinear system for pipes, in which the multiple timestep case essentially reduces to the
single timestep case.

Lemma 4.2.1. The nonlinear system (4.3)-(4.6) can be simplified to

pu,ti + pv,ti − pu,t0 − pv,t0 (4.5)

+
i∑

k=1

2RsTz(tk − tk−1)
LaAa

(
qnomv,tk

− qnomu,tk

)
= 0 ∀i = 1, . . . , n,(

1 +
gsaLa
2RsTz

)
pv,ti −

(
1− gsaLa

2RsTz

)
pu,ti (4.6)

+
λaRsTzLa

4DaA2
a

(∣∣qnomu,ti

∣∣ qnomu,ti

pu,ti
+

∣∣qnomv,ti

∣∣ qnomv,ti

pv,ti

)
= 0 ∀i = 1, . . . , n.

Proof. We can calculate (4.5) from (4.3) by elementary row operations. We show this by
induction: This is already true for i = 1, by equation (4.3). For i > 1 we can then add
equation (4.5) for the index i− 1 to (4.3) for the index i.

Lemma 4.2.1 is surprising because it shows that the solutions pu,ti and pv,ti only depend
the initial pressure pu,t0 and pv,ti and are independent of the previous timestep.
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4. Iterative Velocity Approximation

For the remainder of section 4.2 We define the constants

ai =

(
pu,t0 + pv,t0 −

i∑
k=1

2RsTz(tk − tk−1)
LaAa

(
qnomv,tk

− qnomu,tk

))
, (4.7)

bu =

(
1− gsaLa

2RsTz

)
, (4.8)

bv =

(
1 +

gsaLa
2RsTz

)
, (4.9)

cu,i =
λRsTzLa

4DaA2
a

∣∣qnomu,ti

∣∣ qnomu,ti , (4.10)

cv,i =
λRsTzLa

4DaA2
a

∣∣qnomv,ti

∣∣ qnomv,ti .. (4.11)

We can use these constants to give a more compact representation of the system (4.3)-(4.4).
We rewrite the discretized continuity and momentum equation (4.5) and (4.6)

pu,ti + pv,ti = ai ∀i = 1, . . . , n, (4.12)

bvpv,ti − bupu,ti +
cu,i
pu,ti

+
cv,i
pv,ti

= 0 ∀i = 1, . . . , n. (4.13)

The system (4.12)-(4.13) admits an explicit solution. We can solve the system by
calculating the zero set of a polynomial of degree three. This implies that the system
always has a solution (even at least one real solution), but it does not guarantee that the
solution is physically possible (i.e., negative or imaginary pressure values).

Lemma 4.2.2. For a pipe a = (u, v) ∈ Api and timesteps t1, . . . , tn, and initial pressure
values pu,t0 and pv,t0 the nonlinear system (4.3)-(4.4) has a solution p∗u,t1 , . . . , p

∗
u,tn ∈

[p
u
, pu] and p∗v,t1 , . . . , p

∗
v,tn ∈ [p

v
, pv] if for every i = 1, . . . , n the polynomial

Pi(x) := (bu + bv)x
3

− (aibu + 2 aibv)x
2

+
(
ai

2bv − cu,i + cv,i
)
x

+ aicu,i

has a real-valued zero p∗i ∈ [p
u
, pu] and additionally ai − p∗i ∈ [p

v
, pv] holds.

Proof. We extend the momentum equation (4.13)

− bupu,ti2pv,ti + bvpu,tipv,ti
2 + cv,ipu,ti + cu,ipv,ti = 0. (4.14)

Additionally, we rearrange the continuity equation (4.12) for timestep ti

pv,ti = ai − pu,ti , (4.15)
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4. Iterative Velocity Approximation

and can then substitute pv,ti by equation (4.15) into (4.14), and get a polynomial in pu,ti :

(ai − pu,ti)
2bvpu,ti − (ai − pu,ti)bupu,ti2 + cv,ipu,ti + (ai − pu,ti)cu,i

= (bu + bv)pu,ti
3 − (aibu + 2 aibv)pu,ti

2 +
(
ai

2bv − cu,i + cv,i
)
pu,ti + aicu,i

=: P (pu,ti).

The polynomial P has degree three, so we can find the zeros of P explicitly via Cardano’s
method (e.g. [Bosch, 2013]). If one of the solutions is in pu,ti ∈ [p

u
, pu] for which holds

that ai − pu,ti = pv,ti ∈ [p
v
, pv], then pu,ti and pv,ti are valid solutions for the subsystem.

If this holds for every i = 1, . . . , n we have found a solution for the complete system.

Lemma 4.2.2 shows that for each timestep there are possibly three different solutions
to the system (2.15)-(2.16). The following example shows that we can find flow and
pressure values as well as length and diameter to construct a single pipe instance in
which more than one solution is physically possible.

Example 4.2.3. Consider the pipe a = (u, v) with the following parameters

sa = 0,

La = 14.4 km,

Da = 39 cm,

ka = 0.1 mm,

 λa ≈ 0.14.

We consider a scenario with the following values:

t0 = 0 s,

t1 = 3600 s,

pu,t0 = 45 bar,

pv,t0 = 13.61 bar,

qnomu,t1 = 62 kg/s,

qnomv,t1 = 60 kg/s.

With these values, the polynomial from Lemma 4.2.2 has the three solutions (rounded to
two decimal places)

x0 ≈ −5.60,

x1 ≈ 53.28,

x2 ≈ 57.09.
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4. Iterative Velocity Approximation

Even for moderate pressure bounds, i.e., 1 bar as lower bound and 100 bar as upper bound,
the system (2.15)-(2.16) has two solutions within these bounds

pu,t1 ≈ 53.28 bar,

pv,t1 ≈ 16.57 bar,

as well as

pu,t1 ≈ 57.09 bar,

pv,t1 ≈ 12.76 bar.

For the single pipe case, we can easily calculate the exact solutions, but we want to
find out something about the convergence properties of the iterative method 1. The
plan is now to define the iteration as a fixed point iteration and then use the Banach
fixed-point theorem to prove convergence. We start with a recapitulation of the Banach
fixed-point theorem (see for example [Amann and Escher, 1998]).

Theorem 4.2.4 (Banach Fixed-Point Theorem). Let X be a non-empty complete metric
space and dX(·, ·) be the corresponding metric. Let f : X → X be a contraction on X,
i.e., a function s.t. there exists a constant L < 1 s.t. for all points x, y ∈ X it holds that

dX(f(x), f(y)) ≤ LdX(x, y).

Then f has a unique fixed-point x∗ ∈ X and the iteration xn = f(xn−1) converges to x∗

for all start values x0 ∈ X.

Proof. See [Amann and Escher, 1998].

To apply the theorem to our case, we first construct the actual iteration function.
Consequently, we apply the iteration schema to the simplified system (4.5)-(4.6). This

yields yet another system that we can explicitly solve for p
(k)
u,ti

and p
(k)
v,ti

.

p
(k)
u,ti

+ p
(k)
v,ti

= ai ∀i = 1, . . . , n, (4.16)

bvp
(k)
v,ti

− bup(k)u,ti +
cu,i

p
(k−1)
u,ti

+
cv,i

p
(k−1)
v,ti

= 0 ∀i = 1, . . . , n. (4.17)

For fixed values of p
(k−1)
u,ti

and p
(k−1)
v,ti

the system (4.16)-(4.17) is linear and has a block
diagonal structure. Each block ((4.16) and (4.17) for a single timestep) admits a unique
solution. Thus the complete system (for all timesteps) also admits a unique solution.

Remark 4.2.5. The solution for the linear system (4.16)-(4.17) is

p
(k)
u,ti

=
1

2

(
aibv +

cu,i

p
(k−1)
u,ti

+
cv,i

p
(k−1)
v,ti

)
,

p
(k)
v,ti

=
1

2

(
aibu −

cu,i

p
(k−1)
u,ti

− cv,i

p
(k−1)
v,ti

)
.
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4. Iterative Velocity Approximation

Proof. Use Gaussian elimination and the fact that bu + bv = 2 (see definition (4.7)). Also

ai −
aibu

2
=

2ai − aibu
2

=
(bu + bv)ai − aibu

2
=
aibv

2
.

From remark 4.2.5 we can explicitly construct the iteration function that we need for
Theorem 4.2.4. Now we want to define a function fpi that maps a solution

p(k) = (p
(k)
u,t1

, . . . , p
(k)
u,tn , p

(k)
v,t1

, . . . , p
(k)
v,tn) ∈ R2n

in the k-th iteration step to the next iterate p(k+1) ∈ R2n. Therefore we define fpi in
terms of its components. We can construct them directly from 4.2.5. For any index
i = 1, . . . n we can define the two component functions

f2i−1(x1, . . . , x2n) :=
1

2

(
aibv +

cu,i
x2i−1

+
cv,i
x2i

)
,

f2i(x1, . . . , x2n) :=
1

2

(
aibu −

cu,i
x2i−1

− cv,i
x2i

)
.

This yields the iteration function

fpi(x1, . . . , x2n) :=

 f1(x1, . . . , x2n)
...

f2n(x1, . . . , x2n)

 .

The way we constructed the system (4.16)-(4.17) and fpi implies that any solution p∗

to the system (4.3)-(4.4) is a fixed point of the function fpi.

Theorem 4.2.6. Suppose there exists a solution

p∗ = (p∗u,t1 , . . . , p
∗
u,tn , p

∗
v,t1 , . . . , p

∗
v,tn) ∈ [p, p]2n

for the nonlinear system (4.3)-(4.4) and for every point p ∈ [p, p]2n it holds that

fpi(p) ∈ [p, p]2n.

If the constant

l :=

(
max
i=1,...,n

|cu,i|+ |cv,i|
p2

)
(4.18)

is less than 1, (i.e., l < 1) then the iteration p(k) = fpi(p
(k−1)) converges to p∗ for every

p(0) ∈ [p, p]2n.
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4. Iterative Velocity Approximation

Proof. We want to show that f is a contraction. We can estimate Lipschitz param-
eters for the component functions f2i−1 and f2i on the interval [p, p]. For this let
x1, . . . , x2n, y1, . . . , y2n ∈ [p, p]. Then for all i = 1, . . . , n the following inequalities hold
for the functions f2i−1:

|f2i−1(x1, . . . , x2n)− f2i−1(y1, . . . , y2n)|

=
1

2

∣∣∣∣ cu,ix2i−1
+
cv,i
x2i
− cu,i
y2i−1

− cv,i
y2i

∣∣∣∣
=

1

2

∣∣∣∣cu,iy2i−1 − cu,ix2i−1x2i−1y2i−1
+
cv,iy2i − cv,ix2i

x2iy2i

∣∣∣∣
≤ 1

2

∣∣∣∣cu,i(y2i−1 − x2i−1)x2i−1y2i−1

∣∣∣∣+

∣∣∣∣cv,i(y2i − x2i)x2iy2i

∣∣∣∣
≤ 1

2

(
|cu,i|
p2
|x2i−1 − y2i−1|+

|cv,i|
p2
|x2i − y2i|

)
≤ |cu,i|+ |cv,i|

p2
‖(x1, . . . , x2n)− (y1, . . . , y2n)‖∞ .

The same bound can be proven for the functions f2i in a similar way. In total we can
then estimate the Lipschitz parameter for f :

‖f(x1, . . . , x2n)− f(y1, . . . , y2n)‖∞

≤
(

max
i=1,...,n

|cu,i|+ |cv,i|
p2

)
︸ ︷︷ ︸

l:=

‖(x1, . . . , x2n)− (y1, . . . , y2n)‖∞ .

If the parameter l is less than 1, f is a contraction. Together with X = [p, p]2n and
d(x, y) = ‖x− y‖∞ we can use Theorem 4.2.4 to show that the iteration converges.

The result of Theorem 4.2.6 is useful in two different ways: The estimate we can show
is only influenced by the pipe parameters, a minimum pressure estimate and the flow
demands at the end of the pipe and in particular independent on the initial pressure
values pu,t0 , pv,t0 . Thus we can make relatively general statements about convergence for
a large class of scenarios. Therefore we can solve (4.18) for the length La. This can then
serve as a bound on the length of a pipe for which algorithm 1 is guaranteed to converge.
For a horizontal pipe and a single timestep we can calculate the bound via the following
formula:

Lmax (D) =
p2π2D5

4λaRsTz
· 1

(qnomu,t1
)2 + (qnomv,t1

)2
. (4.19)

An exemplary result is shown in Figure 4.1.
Due to the high exponent of D in (4.19), it is not surprising, that the possible length

of a pipe rapidly increases with increasing diameter. In pipes with a large diameter, there
is much less friction.
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Rs = 518.260911301 J / (K · kg)
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z = 0.9
k = 0.001 m
pmin = 1 bar
q0, t2  = 70.00 kg / s
qL, t2  = 70.00 kg / s

maximum pipe length for garantueed convergence

Figure 4.1.: Maximum length L of a pipe as a function of the diameter D s.t. Algorithm
1 is guaranteed to convergence.
The physical parameters used for the calculation are given in the figure.

minimum maximum average median

Length (km) 0.01 173.66 3.99 0.66

Diameter (cm) 15 210 41.41 30

Roughness (mm) 0.008 1 0.098 0.1

Table 4.1.: Average, Median and Extreme Values of Pipe Parameters from GasLib-11,
GasLib-24, GasLib-40, GasLib-134, GasLib-135, GasLib-582 and GasLib-4197
Networks.
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We calculated minimum, maximum, median and average for pipe parameters from the
GasLib networks. The results are listed in Table 4.1.

Table C.1 in Appendix C shows Lipschitz parameters for different combinations of
the values from Table 4.1 with a minimum pressure estimate of 1 bar. We only include
combinations of length, diameter, and roughness that admit a stationary solution for a
flow of 70 kg/s with pressure values between 1 bar and 100 bar. For example, a pipe
that is 100km long and has a diameter of 15cm cannot transport 70 kg/s of gas with a
maximum pressure of 100 bar.

We can see that the diameter of the pipe has the biggest influence, and thus we can
only guarantee convergence for very short pipes or pipes with a relatively large diameter.
Another insight of the formula (4.19) is that the pressure estimate has a quadratic
influence on the Lipschitz constant, thus having good lower bounds on possible pressure
values is important if we want to guarantee convergence. Overall one of the implications
of Theorem 4.2.6 is that the algorithm shows vastly better convergence behaviour in
high-pressure scenarios.

4.3. Properties of the Linear System for Paths

By coupling several pipes on a path, we can examine a more extensive linear system.
Ideally we should be able to prove convergence theorems for pipes on a path, but
unfortunately, no approach has worked for us so far. Still, we want to share the insights
into the structure of the nonlinear system, that we gathered.

We define the path Pn on n nodes as: Let Pn = (V,A) where V = {0, . . . , n} and
A = Api = {(i− 1, i) | i ∈ V, i > 0}.

We are dealing with a very specific case of the system here. We only examine a single
timestep on a path with only horizontal pipes. In order to make the nonlinear systems
less overloaded with parameters and indices, we introduce a slightly simplified notation
for this special case. Having at most one ingoing and one outgoing pipe per node results
in the coupling conditions

qout(i−1,i),t = qin(i,i+1),t ∀i ∈ V : 0 < i < n. (4.20)

From these conditions we can introduce a single flow variable per node, which we will
refer to as qi,t, where q0,t = qin(0,1),t and qn,t = qout(n−1,n),t.

So for paths on a single timestep [t0, t1] with ∆t = t1 − t0 we we define the following
constants

ci =
2RsTz∆t

L(i,i+1)A(i,i+1)
,

di = pi,t0 + pi+1,t0 ,

ei =
λ(i,i+1)L(i,i+1)

4D(i,i+1)A(i,i+1)
.
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The unsimplified equations are thus

pi,t1 + pi+1,t1 + ci(qi+1,t1 − qi,t1)− di = 0,

pi+1,t1 − pi,t1 + ei

(
|qi,t1 | qi,t1
pi,t1

+
|qi+1,t1 | qi+1,t1

pi+1,t1

)
= 0.

With v
(k)
i =

∣∣∣q(k)i,t1

∣∣∣
p
(k)
i,t1

The iteration scheme results in the following system:

pi,t1 + pi+1,t1 + ci(qi+1,t1 − qi,t1)− di = 0, (4.21)

pi+1,t1 − pi,t1 + ei

(
v
(k)
i qi,t1 + v

(k)
i+1qi+1,t1

)
= 0. (4.22)

By adding (4.21) to (4.22) and subtracting (4.22) from (4.21) we end up with

2pi,t1 +
(
−ci − eiv(k)i

)
qi,t1 +

(
ci − eiv(k)i+1

)
qi+1,t1 − di = 0, (4.23)

2pi+1,t1 +
(
−ci + eiv

(k)
i

)
qi,t1 +

(
ci + eiv

(k)
i+1

)
qi+1,t1 − di = 0. (4.24)

Equation (4.24) for pipe (i, i + 1) can be subtracted from equation (4.23) for pipe
(i+ 1, i+ 2) which results in the tridiagonal system

q0,t1 = qnom0,t1 ,

2p0,t1 +
(
−c0 − e0v(k)0

)
q0,t1 +

(
c1 − e1v(k)1

)
q1,t1 = d0,(

−eiv(k)i + ci

)
qi,t1 +

(
v
(k)
i+1 (ei − ei+1)− ci − ci+1

)
qi+1,t1 ,(

−ei+1v
(k)
i+2 + ci+1

)
qi+2,t1 = di+1 − di ∀i ∈ V,

qn,t1 = qnomn,t1 .

The simplified system can then be solved with the tridiagonal-matrix-algorithm to
speed up the solution method.
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In this chapter, we want to compare both the speed and the accuracy of the different
solution approaches that we introduced in the chapters 3 and 4. We test different ap-
proximations for the pipe flow system (2.15)-(2.16). The networks and the corresponding
transient scenarios are described in Appendix B.

Before we start to present the computational results, we discuss how to obtain an
initial state for the demand scenarios.

5.1. Calculating an Initial State

We need a valid initial state for the transient system, so we chose to calculate a so-called
stationary state (also called “steady state”) for the network. The pressure and flow in a
steady state system are fixed in such a way that the network can supply the flow demands
for an unlimited amount of time (see [Koch et al., 2015, 1.2]). In a stationary calculation,
we want to find flow variables qa for a ∈ A and pressure values pu for nodes u ∈ V .

For our transient scenario, we want to have an initial state from which we can both
increase or decrease pressure variables. Therefore we need to find a stationary solution
which enables this. As a consequence, we decided to use an objective function that
maximizes the minimal distance of the pressure variables to their pressure bounds, i.e.,

maximize min
u∈V

min
(
pu − pu, pu − pu

)
. (5.1)

[Humpola et al., 2015] describe a constraint programming formulation for the existence
of stationary flow in passive pipe networks. By adding short cut constraints and the
objective function (5.1) (which maximizes pressure slack), we can extend their formulation
to our use-case. For a pipe a = (u, v) ∈ Api we then define the following parameters

Λa =
λaRsTzLa
A2
aDa

,

Sa =
2gsaLa
RsTz

,

αa =

{
Λa

eSa−1
Sa

, if Sa 6= 0

Λa otherwise
,

βa = eSa .

A stationary solution for a passive network (all elements are open or in bypass mode)
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can then be obtained by solving the following program:

maximize min
u∈V

min
(
pu − pu, pu − pu

)
(5.2)

s.t.
∑

a∈δ+(u)

qa −
∑

a∈δ−(u)

qa = qnomu,t0 ∀u ∈ V, (5.3)

p2v − βap2u − αa |qa| qa = 0 ∀a = (u, v) ∈ Api, (5.4)

pu − pv = 0 ∀a = (u, v) ∈ A \Api, (5.5)

p
u
≤ pu ≤ pu ∀u ∈ V, (5.6)

q
a
≤ qa ≤ qa ∀a ∈ A. (5.7)

We then perform the stationary calculations on a passive network (i.e., short cut con-
straints for active elements) with a minimum pressure p

u
of 1 bar and a maximum

pressure pu of 100 bar for each node u ∈ V . On further details on how to do stationary
calculations see [Koch et al., 2015], which contains extensive material on this and closely
related topics (nomination-validation, gas network capacities, etc.).

A solution to the stationary problem (5.2)-(5.7) then gives pressure values pu for each
node u ∈ V and thus defines the initial conditions pu,t0 = pu for the transient scenario.

5.2. Convergence Results for Iterative Velocity Approximation

The purpose of this section is to explore convergence properties of Algorithm 1 experi-
mentally. We created a few simple test instances and also tested on publicly available
networks. Details and visual representations of the networks can be found in Appendix
B.

For some of the more complex instances we did not manage to find an explicit solution
to the problem, so we have to find another way to measure the quality of an approximate
solution to the system (2.15)-(2.16). A common approach is to measure how well a
solution in each iteration “fulfills” the constraints, i.e., we measure the values that we get
by plugging in a solution of the iteration scheme into the original discretized equations
using the correct nonlinear velocity in the friction term. What then remains is essentially
the value of the constraint violation. [Kelley, 1995] calls this the nonlinear residual.

As an example let us look at some pipe a = (u, v) ∈ Api, then the solution after the

k-th iteration yields some pressure and flow values p
(k)
u,ti

, p
(k)
v,ti

, (qin)
(k)
a,ti

and (qout)
(k)
a,ti

. The
residual for the momentum equation for this pipe at timestep ti is defined as:

ra,ti :=

(
gsL

2RsTz
+ 1

)
p
(k)
v,ti

+

(
gsL

2RsTz
− 1

)
p
(k)
u,ti

+
λRsTzLa

4DaA2
a

(∣∣(qina,ti)(k)∣∣
p
(k)
u,ti

(qina,ti)
(k) +

∣∣(qouta,ti)
(k)
∣∣

p
(k)
v,ti

(qouta,ti)
(k)

)
.

(5.8)

The residuals for the other equations (flow conservation and discretized continuity
equation) are less interesting because both these equations are linear and linear system
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solvers tend to return solutions with a negligible residual for linear constraints. In our
experiments, we do compare all of the residuals, but we have found that the residual
of the discretized momentum equation always yields the highest residual. To estimate
how well Algorithm 1 performs, we measure the maximum of all the residuals of the
momentum equation

rmax = max
a∈Api,ti∈T

|ra,ti |. (5.9)

5.2.1. Pipes

In the previous sections, we have proved that under certain circumstances the iteration
described in algorithm 1 converges on a single pipe (see Theorem 4.2.6). This theorem
only gives an upper bound on the Lipschitz constant, so we are interested in cases in
which these bounds are particularly bad, and we want to see if the iteration still converges.
Due to lemma 4.2.1 we only need to look at scenarios with one timestep, as each timestep
is independent of the one before.

So we tested the iteration on three different pipes, an “average pipe” (i.e., average
values from pipes in the GasLib, compare Table 4.1) with 3.99 km length 41.41 cm
diameter and a roughness of 0.098 mm, with a Lipschitz constant of 253.88 (compare
Table C.1 in Appendix C) and a “hard pipe” with 3.99 km length, 30 cm diameter and
roughness 1 mm which yields a Lipschitz constant of 2402.59 (again compare Table C.1
in Appendix C), as well as the pipe defined by the parameters in Example 4.2.3.

For the special case of single pipes we do not need to measure the residual, but can
instead give the difference to the explicit solution (see Lemma 4.2.2). We only simulate
one timestep on a single pipe a = (u, v), so the only variables that we need to find are
pu,t1 and pv,t1 . The continuity equation (2.15) gives a linear relation between pu,t1 , and

pv,t1 . So for an exact solution p∗u,t1 , p
∗
v,t1 and an intermediate solution p

(k)
u,t1

, p
(k)
v,t1

it suffices
to measure

d(k)a :=
∣∣∣p∗u,t1 − p(k)u,t1∣∣∣ .

Figures C.1 to C.6 in Appendix C show the results of the calculations. Each figure
additionally contains the parameters used in the iteration (the pressure at the start node,
the pressure at end the node, the inflow, the outflow and the start values for the iteration,
as well as, the values of the exact solution).

It is interesting to see that for all different start values that we tried (even for negative
ones) the algorithm converges on the average as well as on the hard pipe. What becomes
evident from the plot C.5 is that intermediate solutions in the iteration process might lie
outside of the designated pressure bounds for the pipe. If the iteration is included within
a linear program in which there are bounds on pressure and flow this might lead to the
infeasibility of intermediate programs. Thus it makes sense to remove these bounds on
the variables for the iteration itself.

Figure C.6 shows the result for a pipe, where several solutions are feasible. Initially,
the distance to a solution increases until it reaches a tipping point at the 13-th iteration.
We suspect that this is related to the fact that two solutions of the nonlinear system are
close together (see Example 4.2.3).
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All in all, convergence on a single pipe works well for pipes with realistic values, even
for instances with large Lipschitz constants.

5.2.2. Instances with multiple pipes

For instances with multiple pipes we are not able to calculate an exact solution, so we
plot the maximum residual rmax for each intermediate solution and additionally plot the
maximum difference between subsequent iterations. Details on the instances and the
corresponding scenarios can be found in Appendix B. The plots for the results can be
seen in Figures C.7 to C.15c which are in Appendix C.

The initial conditions (i.e., pressure values pu,t0 for all u ∈ V ) are calculated by
calculating a stationary flow in the passive network (see Appendix B for the details). In
all of the calculations, the number of iterations varies, as the iteration was performed
until there was a cycle in the sequence of solutions, i.e., the solution did not change
any more, or a previous solution was reached again. The residual is measured for
the discretized momentum equation (2.16) and is measured in Pascal. The model is
implemented using the Pyomo 5.5.1 Python package [Hart et al., 2017]. The resulting
series of linear programs are then solved with CPLEX 12.8 [IBM ILOG CPLEX Division,
2017]. The initial values for the iterative method are obtained by extending the flow and
pressure values from a stationary calculation to all timesteps, i.e., if for each node u ∈ V
the pressure values pu and for each arc a ∈ A the flow values qa are obtained from the
stationary calculation, we set

p
(0)
u,ti

= pu ∀u ∈ V, ∀i = 1, . . . , n, (5.10)

(qin)
(0)
a,ti

= qa ∀a ∈ Api, ∀i = 1, . . . , n, (5.11)

(qout)
(0)
a,ti

= qa ∀a ∈ Api, ∀i = 1, . . . , n, (5.12)

q
(0)
a,ti

= qa ∀a ∈ A \Api, ∀i = 1, . . . , n. (5.13)

We divide the test set into two different groups. The first group consists of networks
designed by ourselves (Path, Star, Cycle, and Tree). We call these networks the
“artificial instances”. The other set of instances consists of networks from [Schmidt et al.,
2017] and are therefore called “GasLib” instances. The GasLib instances contain the
networks GasLib-11, GasLib-24, GasLib-40, GasLib-134 and GasLib-135.

Artificial Instances

Figures C.7 to C.10 in Appendix C show the convergence properties on the artificial
networks. We observe that in small networks already after few iterations, the residual is
in an acceptable range (less than 10−5Pa = 10−10bar). In the cycle-free networks (Path,
Star, Tree) all the pressure variables we can clearly see that the iteration converges, the
difference between iterations becomes less than 10−9. As a comparison [Stolwijk and
Mehrmann, 2018] use an absolute tolerance of 10−3 as a stopping criterion for Newton’s
method.
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What we also see is that for Cycle, the results do have an acceptable residual (less
than 10−6Pa), but the iteration cycles between two solutions that are further apart than
for cycle-free networks (1.27 · 10−6 compared to 1 · 10−9). We suspect that there are two
different solutions to the discretized system, that are very close together, so the iteration
might not be able to converge. (We cannot prove this, as we do not have a symbolic
solution for the discretized system).

GasLib Instances

GasLib-11, GasLib-24 (Figures C.11 to C.13b) in Appendix C start to cycle between
solutions that are relatively close together (difference less than 0.3) but the residual of
these solutions is higher than in the artificial instances. It is important to note that all
of these networks do contain cycles.

The results for GasLib-40 are considerably worse than for the smaller networks. Again
the solution cycle, but the difference is larger than 1. The residual is also larger than for
all of the smaller networks.

Even though the GasLib-134 is the second largest network in our calculations, the
results are better than for the smaller instances. A residual less than 10−5 can be achieved,
and subsequent solutions are as close as 2.87 · 10−7. The fact that the results are better
than for the other instances might be influenced by the structure of the network. In
contrast to the other GasLib instances, GasLib-134 does not contain any cycles. We
suspect that the better performance of the iterative method is related to this.

The GasLib-135 instance (Figures C.15a and C.15c) shows the worst behaviour. The
best residual that is achieved reached 65.34 is also relatively high compared to all the
other instances. Particularly bad is that the iteration cycles between solutions that are
far apart, the difference does not go below 5.54 even after 287 iterations.

5.3. Performance Results

We compare piecewise linear approximation and iterative velocity approximation to
generic nonlinear solution approaches that are implemented by BARON [Tawarmalani
and Sahinidis, 2005] and SCIP [Gleixner et al., 2018]. We use SCIP 6.0 which is compiled
to use IPOPT [Wächter and Biegler, 2006] and CPLEX [IBM ILOG CPLEX Division,
2017].

For a piecewise linear approximation, replacing the friction term is described in 3.6.
We test all of the PWL formulations with three discretization points in each dimension.
The CCLOG 3.3.1 formulation is additionally tested with five and seven discretization
points. The discretization points are equally spaced between the lower and the upper
bound of the variable (the first point is equal to the lower bound and the last point equal
to the upper bound). Both the INC and the CCLOG formulation use the J1-triangulation
to triangulate the domain. For the other formulations, we use a Delaunay triangulation
generated by qdelaunay from qhull [Barber et al., 1996].

The third approach is to apply iterative velocity approximation. We have seen in
section 5.2, that Algorithm 1 does not always converge and the residual can be bounded.
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So instead of formulating a stopping criterion based on the residual or the difference
between subsequent solutions, we choose to fix the number of iterations for the iterative
method 1. From section 5.2 we conclude that ten iterations yield a good trade-off between
solution time and solution accuracy.

Even though we do not have an objective to optimize, all of the models are solved by
optimization software, because we want to test solution behaviour when we embed the
approximations into an optimization problem. Therefore we define a constant objective
function and hence solve a feasibility problem. The linear models are solved with CPLEX
12.8 [IBM ILOG CPLEX Division, 2017]. The computations were performed on Intel
Xeon E3-1245 v3 CPU with 3.40GHz and 32 GB RAM. We run all calculations with a
time limit of one hour (3600 seconds) and implement the different solution methods with
the Pyomo Python package [Hart et al., 2017].

For a passive network G = (V,A) with a transient scenario we work with a system
composed of the constraints introduced in chapter 2:

∃p, qin, qout, q (5.14)

s.t. discretized continuity equation (2.15) ∀a ∈ Api, ∀t ∈ T , (5.15)

discretized momentum equation (2.16) ∀a ∈ Api, ∀t ∈ T , (5.16)

short cut constraint (2.18) ∀a ∈ A \Api, ∀t ∈ T , (5.17)

flow conservation constraint (2.3) ∀u ∈ V, ∀t ∈ T , (5.18)

flow bounds (2.1) ∀a ∈ A, ∀t ∈ T , (5.19)

pressure bounds (2.1) ∀a ∈ A, ∀t ∈ T . (5.20)

Each of the pressure and flow variable comes with an upper and a lower bound. These
bounds tend to be far apart, so in order to achieve an acceptable approximation with the
PWL models, we either need very fine discretizations (i.e., many points) or have very
good bounds on the variable s.t. a coarse discretization still yields good results. The
problem with fine discretizations is that the size of the formulations grows fast because
the number of triangles in the discretization increases quadratically in the number of
discretization points. So to get better bounds on the variables, we first solve the nonlinear
system with a nonlinear solver and then apply new tighter bounds to the variables. To
tighten the bounds we choose to reduce the lower bound for each variable by 10% of its
value in the nonlinear solution value and the upper bound is increased by 10 % of its
nonlinear solution value.

Our results are then obtained by solving the instances with the updated variable
bounds. We then give the maximum nonlinear residual of each solution (see equation
(5.9)). To give some relation between the solutions from different solution methods, we
include a comparison with the result of the nonlinear solution process. Therefore we
calculate the maximum of the relative difference

∆(x, y) =
|x− y|

max (|x| , |y|)
(5.21)

for each variable to the nonlinear solution(
with solution values pnlu,ti , q

nl
a,ti , (q

in
a,ti)

nl, (qouta,ti)
nl
)
,
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Constant value

T 10◦C
Rs 0.52 kJ/(kg ·K)
z 0.9
ρ0 0.78 kg/m3

g 9.81 m/s2

Table 5.1.: Physical Quantities for Transient Calculations

i.e.,
∆max := max

x∈pu,ti ,qa,ti ,q
in
a,ti

,qouta,ti

∆(x, xnl). (5.22)

We also include the solution time for each method.
The physical parameters used in the calculations can be found in table 5.1.
The results for all test scenarios are listed in the tables D.2 to D.10 in Appendix D.

5.3.1. Artificial Networks

The artificial networks (Path, Star, Cycle, Tree) are very small (less than ten pipes),
so the corresponding optimization problems are also rather small, and the instances can
easily be solved within less than a minute. The details of the solutions are summarized
in tables D.2 to D.5 in Appendix D.

Solving the nonlinear problem with improved bounds is always the fastest approach for
the small instances. Also in all of the instances, the residual of the nonlinear solution is
the smallest by a large factor of at least 106. The nonlinear solution with improved bounds
can improve the nonlinear residuals in three out of the four instances, and the solution
is always extremely close to the solution without improved bounds. NL-SCIP solves
the Path, Cycle and Tree instances with tightened bounds one magnitude faster than
NL-BARON. The Star instance can be solved in the same magnitude as NL-BARON,
but it shows similar behaviour to ITERATE, i.e., the solution is almost 10% different to
the solution of NL-0. The residual of the SCIP solution is always among the smallest.

Let us examine the iterative velocity approximation results. In section 5.2 we have
already seen that the solutions from the algorithm are acceptable w.r.t. their nonlinear
residual. In the Path, Tree and Cycle instances the solutions are always extremely close
to the nonlinear solution (less than 10−8%), but in the Star instance, there is a difference
of 9.76% which is almost the maximum difference we can see due to the improved bounds.
This leads us to believe that the solution of the Star instance might not be unique.
Solution times are always worse than the nonlinear solver.

The PWL models have the worst residuals, but the solutions still are acceptable, they
never differ more than 1% to the nonlinear solution. We can also verify that increasing
the number of discretization points always improves the nonlinear residual, which is
exactly what we expect. Formulations which use the same domain discretization yield
the same results, which is also what we expect. The solution times of all the models
correlate with their formulation size (compare Table 3.1) formulations with fewer binary
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variables can be solved faster than the others, CCLOG and DLOG seem to perform best.
This corresponds to the findings in [Vielma et al., 2010]. The number of discretization
points heavily influences solution time and considerably slows down the solution process.

5.3.2. GasLib

The GasLib networks do not only contain pipes as network elements but include active
elements also. With the system (5.14)-(5.20), we can calculate a solution on passive
versions of each GasLib network. The GasLib networks have a more structure than the
artificial instances and are generally bigger, so results on the GasLib instances are a little
more interesting because the GasLib networks are a lot more realistic. We analyze the
results of the tables D.6 to D.10.

In all of the networks improving bounds greatly speeds up the nonlinear solver. The
nonlinear solution with improved bounds does not yield consistent results w.r.t the
nonlinear residual. In two cases there is an improvement, in two other cases it gets worse,
and for GasLib-134 the problem is marked as “infeasible”. We are not able to provide an
explanation for this behaviour. GasLib-134 can be solved by SCIP within 5.35 seconds
which is almost 5 times faster than BARON. SCIP is not able to solve GasLib-40 and
GasLib-135 within the time limit.

Iterative velocity approximation produces worse results than the nonlinear solver and
is always slower than the nonlinear solver with improved bounds. The relative difference
is always within 0.01% of the nonlinear result. But iterative velocity approximation can
find acceptable approximations in less time than the nonlinear solver without needing
improved bounds. The difference in the quality of solutions is acceptable, and the solution
time is much faster.

If we look at the PWL models, we can see that CCLOG is always the fastest, in the
three largest instances all other formulations trigger a timeout. Unfortunately increasing
the number of discretization points is not feasible for even moderately sized instances
like GasLib-24. In every instance, iterative velocity approximation performs better than
all of the PWL models.
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We have introduced different ways to find approximations to the solution of the discretized
nonlinear system for gas flow in pipelines (2.15)-(2.16) and compared them to current
methods to solve MINLPs.

We employed different MIP-formulations of piecewise linear functions to approximate
nonlinear function here, but with our approach, none of them give promising results.
There are several problems that we see with our approach: First, the discretization for the
pipe flow includes nonlinearities in two variables. Therefore piecewise linear formulations
already increase in size compared to discretizations that only involve nonlinearities in
one variable. Additionally, we do not yet have a good approach to improve the variable
bounds, to reduce the number of discretization points. Solving the nonlinear problem
first obviously defeats the purpose of removing the nonlinearities. We have also seen
that for nonlinear problems without integer variables, the nonlinear solvers outperform
piecewise linear formulations even when we use small discretizations.

Other researchers had better results by using a piecewise linear formulations as re-
laxations that enclose the nonlinear function. For further details see [Burlacu et al.,
2017b].

Iterative velocity approximation can be used to approximate solutions for the pipe flow
model on passive networks. We were only able to prove convergence on a single pipe, so
there is no theoretical foundation for convergence on bigger networks. The convergence
is also only guaranteed with very restrictive conditions. Maybe some methods to improve
global convergence that are used for traditional iterative methods for systems of nonlinear
equations could be applied (see [Kelley, 1995]). Commercial nonlinear solvers are faster
than our implementation of iterative velocity approximation if tight variable bounds can
be applied a priori. If these bounds are not available, iterative velocity approximation
can give good results faster than the nonlinear solvers without tighter bounds. Rough
approximations can thus be calculated with only a few iterations of Algorithm 1.

In each iteration of Algorithm 1 we only solve a linear system of equations. Therefore
we suspect that the solution speed of iterative velocity approximation could be severely
improved by implementing the iterative method with some fast sparse linear algebra
package instead of going through a linear programming solver.

Ideally we could compare the results obtained by our solution methods to real-world
measurements, but unfortunately, our data does not have pressure and flow measurements
to which we could compare our results. So in the context of real gas networks, we can not
estimate how well our approaches perform. With real-world data, we could also compare
how well different discretizations of the momentum equation (2.12) perform. For example,
you can discretize (2.12) in a way that only quadratic terms in single variables are part of
the discretization. You can then approximate the quadratic terms with piecewise linear
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functions in only one variable (see above).
For future research, it would be interesting to prove further convergence theorems for

iterative velocity approximation on classes of networks (e.g., on trees). Also, iterative
velocity approximation needs to be incorporated into the optimization with active networks
to asses performance in an optimization setting. Especially the choice of objective function
might yield interesting results, e.g., how is the convergence of the method affected if the
number of switching operations for active elements is to be minimized.
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Product Final Energy Consumption (1000 toe)

All products 216447.3
Natural gas 52415.9
Solid fuels 10163.2
Liquified petroleum gas (LPG) 1778.8
Gasoline (without bio components) 17230.3
Aviation gasoline 10.4
Other kerosene 6.1
Kerosene type jet fuel (without bio components) 9383.3
Gas/diesel oil (without bio components) 52232.2
Total fuel oil 855.3
Petroleum coke 116.9
Electrical energy 44486.4

Table A.1.: Final energy consumption in Germany in 2016. The amount of energy
consumed is given in 1000 tonnes of oil equvialent (1000 toe).
Source: [Eurostat, 2018]

1
14

3 5

15 7

12
17

11 9

10
8

6
42

16
13

Figure A.1.: Vertex Traversal for J1 Triangulation, from the lower left to the upper left
corner.
The numbers 1 to 17 give the required vertex order to adhere to the ordering
properties 3.5.1
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Figure A.2.: Vertex Traversal for J1 Triangulation, from the lower left to the upper right
corner.
The numbers 1 to 17 give the required vertex order to adhere to the ordering
properties 3.5.1
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A test network is a digraph G = (V,A) as defined in 2.1. Each of the networks additionally
comes with what we call a transient scenario. A transient scenario describes a sequence of
flow demands over a specified time horizon. In our case each scenario has a total length
of 5 hours (18000 seconds) and is divided into five time intervals of 1 hour each. Thus the
set of time points is {ti = i · 3600 | i = 0, . . . , 5}. We always construct a scenario from an
initial state and a final state. The initial (final) state fixes flow demands qnomu,t0 (qnomu,t5 ) for
each of the nodes u ∈ V . For the intermediate demands at each timestep, we interpolate
the start demands and the flow demands with an affine linear function, i.e.,

qnomu,ti =
i

5
· (qnomu,t5 − q

nom
u,t0 ) + qnomu,t0 .

It is common to give the flow demands at the nodes as volumetric flow Q (in 1000·m3/h)
(see for example [Schmidt et al., 2017]). Therefore we also give the demands as volumetric
flow Qnom, a conversion to mass flow (which is needed in the physical calculations) can
be achieved via the following formula

qnom = ρ0Q
nom, (B.1)

where ρ0 is normal density, i.e., density under normal conditions (1 bar pressure and 0◦

temperature). A short overview of the number of elements in each of the networks can
be gathered from table B.1.

We created a set of artificial networks to test the algorithm on simple network topologies.
All of the GasLib networks, visualizations and the demand nomination files are available

at http://gaslib.zib.de.

network |V+| |V−| |V0| |Api| |Ars| |Ava| |Acv| |Asc| |Acs|
Path 1 1 3 4 0 0 0 0 0
Star 3 3 1 6 0 0 0 0 0
Cycle 1 1 2 4 0 0 0 0 0
Tree 1 4 2 6 0 0 0 0 0
GasLib-11 3 3 5 8 0 1 0 0 2
GasLib-24 3 5 16 19 1 0 1 1 3
GasLib-40 3 29 8 39 0 0 0 0 6
GasLib-134 3 45 86 86 0 0 1 45 1
GasLib-135 6 99 30 141 0 0 0 0 29

Table B.1.: Number of Network Elements in the Test Networks
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v+ v−0 1 2
p1 p2 p3 p4

Figure B.1.: Schematic View of Path

Pipe Length (km) Diameter (cm) Roughness (mm)

p1 173.66 210 1
p2 3.99 41.41 0.098
p3 0.66 30 0.01
p4 0.01 15 0.008

Table B.2.: Pipes in Path

B.1. Path

B.1.1. The Network

In a path network pipes are simply coupled in series. Thus the system for a path has
simple coupling conditions (see subsection 4.3). In our particular instance we connect one
entry node (v+) with one exit node (v−) via four pipes and thus we have three additional
internal nodes. We want to test the behaviour of the iterative method 1 on a simple
topology where we combine pipes with extremely different parameters. The pipes are
combinations of values from the GasLib, see table 4.1. A schematic of the Path instance
can be seen in figure B.1. The detailed parameters for the pipes are given in table B.2.

B.1.2. The Scenario

We are testing an unbalanced flow scenario. We start with balanced demands

Qnomv+,t0
= 300 · 1000 · m

3

h
,

Qnomv−,t0
= −300 · 1000 · m

3

h
.

and reduce the demands to

Qnomv+,t5
= 270 · 1000 · m

3

h
,

Qnomv−,t5
= 260 · 1000 · m

3

h
.
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v+1

v+2

v+3

v−1

v−2

v−3

0

p1

p2

p3

p4

p5

p6

Figure B.2.: Schematic View of Star

Pipe Length (km) Diameter (cm) Roughness (mm)

p1 1 41.41 0.1
p2 2 41.41 0.1
p3 3 41.41 0.1
p4 4 41.41 0.1
p5 5 41.41 0.1
p6 6 41.41 0.1

Table B.3.: Pipes in Star

B.2. Star

B.2.1. The Network

A star-shaped network yields the simplest coupling conditions. Only a single coupling
constraint is added at the center of the star. We want to know how such a simple
constraint influences the solution process of algorithm 1. We created a star-shaped
network with seven nodes and six pipes. In the network there are three entry nodes
(v+1 , v

+
2 , v

+
3 ) and three exit nodes (v−1 , v

−
2 , v

−
3 ). The pipes were chosen to have the median

roughness of the GasLib, and the average diameter of the GasLib. Different pipe lengths
have been chosen so in the stationary calculation, the pressure at each entry (exit) is
different from the pressure at the other entries (exits). The pipe lengths are chosen to be
greater than the median and to be of the same magnitude as the average length in the
GasLib. The exact values can be gathered from table B.3. A visualization is given in
figure B.2.
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B.2.2. The Scenario

We start with equal demands at each boundary node

Qnom
v+i ,t0

= 300 · 1000 · m
3

h
i ∈ {1, 2, 3} ,

Qnom
v−i ,t0

= −300 · 1000 · m
3

h
i ∈ {1, 2, 3} .

The final state is balanced with a 10% reduction of the initial demands:

Qnom
v+i ,t0

= 270 · 1000 · m
3

h
i ∈ {1, 2, 3} ,

Qnom
v−i ,t0

= −270 · 1000 · m
3

h
i ∈ {1, 2, 3} .
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v+ v−

0

1

p1 p2

p3 p4

Figure B.3.: Schematic View of Cycle

Pipe Length (km) Diameter (cm) Roughness (mm)

p1 4 30 0.1
p2 4 30 0.1
p3 3 30 0.1
p4 3 30 0.1

Table B.4.: Pipes in Cycle

B.3. Cycle

B.3.1. The Network

By creating a cycle with 4 nodes we want to see what happens to the iterative method 1
if the coupling conditions between pipes introduce cyclic dependencies between variables.
The cycle has one entry (v+) and one exit node (v−) connected through four pipes. For
the pipes we chose to use the median diameter and the median roughness from the GasLib
(see 4.1), the pipe length is of the same magnitude as the average length of pipes in the
GasLib. The pipes differ in length so the two paths from the source node to the sink
node are different. The exact pipe configurations are listed in table B.4.

B.3.2. The Scenario

We test a balanced scenario. We start with

Qnomv+,t0
= 300 · 1000 · m

3

h
,

Qnomv−,t0
= −300 · 1000 · m

3

h
,

and reduce the demands by 10% to

Qnomv+,t5
= 270 · 1000 · m

3

h
,

Qnomv−,t5
= 270 · 1000 · m

3

h
.
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Pipe Length (km) Diameter (cm) Roughness (mm)

p1 1 40 0.1
p2 2 40 0.1
p3 3 40 0.1
p4 4 40 0.1
p5 5 40 0.1
p6 6 40 0.1

Table B.5.: Pipes in Tree

B.4. Tree

B.4.1. The Network

The Tree network tests behaviour on a small tree-shaped network. The network contains
one entry node v+ and four exit nodes v−1 , v−1 , v−1 and v−4 . The parameters for the six
pipes in the Tree network are given in table B.5.

B.4.2. The Scenario

For the tree we chose a more complex scenario, again the initial state is balanced with
demands

Qnomv+,t0
= 300 · 1000 · m

3

h
,

Qnom
v−i ,t0

= −75 · 1000 · m
3

h
, i ∈ {1, 2, 3, 4} ,

and the final state

Qnomv+,t0
= 270 · 1000 · m

3

h
,

Qnom
v−1 ,t0

= −30 · 1000 · m
3

h
,

Qnom
v−2 ,t0

= −100 · 1000 · m
3

h
,

Qnom
v−3 ,t0

= −10 · 1000 · m
3

h
,

Qnom
v−4 ,t0

= −100 · 1000 · m
3

h
.
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Figure B.4.: Schematic View of Tree

B.5. GasLib-11

B.5.1. The Network

GasLib-11 is a test network from [Schmidt et al., 2017].

B.5.2. The Scenario

The initial state is taken from the test scenario GasLib-11.scn from [Schmidt et al.,
2017]. The final state is a 10% reduction of all the demands given in the initial state.

B.6. Gaslib-24

B.6.1. The Network

GasLib-24 is a test network from [Schmidt et al., 2017].

B.6.2. The Scenario

The initial state is taken from the test scenario GasLib-24.scn from [Schmidt et al.,
2017]. The final state is a 10% reduction of all the demands given in the initial state.

B.7. Gaslib-40

B.7.1. The Network

GasLib-40 is a test network from [Schmidt et al., 2017].
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B.7.2. The Scenario

The initial state is taken from the test scenario GasLib-40.scn from [Schmidt et al.,
2017]. The final state is a reduction of the demands from the initial state to 20% of their
original value.

B.8. GasLib-134

B.8.1. The Network

GasLib-134 is a network from [Schmidt et al., 2017] and is based on real network data.

B.8.2. The Scenario

The initial state is taken from the scenario 2012-08-14.scn and the final state is taken
from the scenario 2012-08-15.scn. Both scenario files are part of the nominations for
GasLib-134.

B.9. Gaslib-135

B.9.1. The Network

GasLib-135 is a test network from [Schmidt et al., 2017].

B.9.2. The Scenario

The initial state is taken from the test scenario GasLib-135 from [Schmidt et al., 2017].
The final state is a 10% reduction of all the demands given in the initial state.
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Length (km) Diameter (cm) Roughness (mm) l

0.01 15 0.008 76.26
0.01 15 0.1 127.48
0.01 15 1 237.27
0.01 30 0.008 2.11
0.01 30 0.1 3.41
0.01 30 1 6.02
0.01 41.41 0.008 0.40
0.01 41.41 0.1 0.64
0.01 41.41 1 1.10
0.01 210 0.008 0.00
0.01 210 0.1 0.00
0.01 210 1 0.00
0.66 30 0.008 139.41
0.66 30 0.1 225.25
0.66 30 1 397.42
0.66 41.41 0.008 26.37
0.66 41.41 0.1 42.00
0.66 41.41 1 72.49
0.66 210 0.008 0.01
0.66 210 0.1 0.01
0.66 210 1 0.01
3.99 30 0.008 842.82
3.99 30 0.1 1361.75
3.99 30 1 2402.59
3.99 41.41 0.008 159.40
3.99 41.41 0.1 253.88
3.99 41.41 1 438.26
3.99 210 0.008 0.04
3.99 210 0.1 0.06
3.99 210 1 0.09
173.66 210 0.008 1.61
173.66 210 0.1 2.41
173.66 210 1 3.81

Table C.1.: Estimate on the lipschitz parameter l rounded to 2 decimal places for different
pipes with Theorem 4.2.6.
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Figure C.1.: Iterative velocity approximation on a pipe (u, v) of length L, diameter D,
and integral roughness k. The figure includes the difference between start
and end time ∆t, the demand values qnomu,t1 at u and qnomv,t1 at v, the pressure
at the first time point (i.e., the initial state) pu,t0 at u and pv,t0 at v. We

start the iteration with the pressure values p
(0)
u,t1

for u and p
(0)
v,t1

for v. p∗u,t1
and p∗v,t1 are pressure values in an exact solution at u and v respectively
(rounded to two decimal places). The calculations are performed with
the physical parameters from Table 5.1. We show the absolute difference

between subsequent solutions
∣∣∣p(k)u,t1 − p(k−1)u,t1

∣∣∣ and the progression of the

pressure values p
(k)
u,t1

.
Here we treat the “average” pipe (refer to Subsection 5.2.1) and start with
values close to the solution.
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Figure C.2.: Iterative velocity approximation on a pipe (u, v) of length L, diameter D,
and integral roughness k. The figure includes the difference between start
and end time ∆t, the demand values qnomu,t1 at u and qnomv,t1 at v, the pressure
at the first time point (i.e., the initial state) pu,t0 at u and pv,t0 at v. We

start the iteration with the pressure values p
(0)
u,t1

for u and p
(0)
v,t1

for v. p∗u,t1
and p∗v,t1 are pressure values in an exact solution at u and v respectively
(rounded to two decimal places). The calculations are performed with
the physical parameters from Table 5.1. We show the absolute difference

between subsequent solutions
∣∣∣p(k)u,t1 − p(k−1)u,t1

∣∣∣ and the progression of the

pressure values p
(k)
u,t1

.
Here we see iterations on the “average” pipe (refer to 5.2.1) and start with
small pressure values.
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Figure C.3.: Iterative velocity approximation on a pipe (u, v) of length L, diameter D,
and integral roughness k. The figure includes the difference between start
and end time ∆t, the demand values qnomu,t1 at u and qnomv,t1 at v, the pressure
at the first time point (i.e., the initial state) pu,t0 at u and pv,t0 at v. We

start the iteration with the pressure values p
(0)
u,t1

for u and p
(0)
v,t1

for v. p∗u,t1
and p∗v,t1 are pressure values in an exact solution at u and v respectively
(rounded to two decimal places). The calculations are performed with
the physical parameters from Table 5.1. We show the absolute difference

between subsequent solutions
∣∣∣p(k)u,t1 − p(k−1)u,t1

∣∣∣ and the progression of the

pressure values p
(k)
u,t1

.
Here we see iterations on the “average” pipe (refer to 5.2.1) and start with
negative pressure values.
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Figure C.4.: Iterative velocity approximation on a pipe (u, v) of length L, diameter D,
and integral roughness k. The figure includes the difference between start
and end time ∆t, the demand values qnomu,t1 at u and qnomv,t1 at v, the pressure
at the first time point (i.e., the initial state) pu,t0 at u and pv,t0 at v. We

start the iteration with the pressure values p
(0)
u,t1

for u and p
(0)
v,t1

for v. p∗u,t1
and p∗v,t1 are pressure values in an exact solution at u and v respectively
(rounded to two decimal places). The calculations are performed with
the physical parameters from Table 5.1. We show the absolute difference

between subsequent solutions
∣∣∣p(k)u,t1 − p(k−1)u,t1

∣∣∣ and the progression of the

pressure values p
(k)
u,t1

.
Here we see iterations on the “hard” pipe (refer to 5.2.1) and start with
pressure values close to the solution.
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Figure C.5.: Iterative velocity approximation on a pipe (u, v) of length L, diameter D,
and integral roughness k. The figure includes the difference between start
and end time ∆t, the demand values qnomu,t1 at u and qnomv,t1 at v, the pressure
at the first time point (i.e., the initial state) pu,t0 at u and pv,t0 at v. We

start the iteration with the pressure values p
(0)
u,t1

for u and p
(0)
v,t1

for v. p∗u,t1
and p∗v,t1 are pressure values in an exact solution at u and v respectively
(rounded to two decimal places). The calculations are performed with
the physical parameters from Table 5.1. We show the absolute difference

between subsequent solutions
∣∣∣p(k)u,t1 − p(k−1)u,t1

∣∣∣ and the progression of the

pressure values p
(k)
u,t1

.
Here we see iterations on the “hard” pipe (refer to 5.2.1) and start with
small pressure values.
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Figure C.6.: Iterative velocity approximation on a pipe (u, v) of length L, diameter D,
and integral roughness k. The figure includes the difference between start
and end time ∆t, the demand values qnomu,t1 at u and qnomv,t1 at v, the pressure
at the first time point (i.e., the initial state) pu,t0 at u and pv,t0 at v. We

start the iteration with the pressure values p
(0)
u,t1

for u and p
(0)
v,t1

for v. p∗u,t1
and p∗v,t1 are pressure values in an exact solution at u and v respectively
(rounded to two decimal places). The calculations are performed with
the physical parameters from Table 5.1. We show the absolute difference

between subsequent solutions
∣∣∣p(k)u,t1 − p(k−1)u,t1

∣∣∣ and the progression of the

pressure values p
(k)
u,t1

.
Here we see iterations on the pipe from Example 4.2.3, which has multiple
physically feasible solutions for the pipe flow system.
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Figure C.7.: Iterative velocity approximation on Path.
The iteration is performed until the iteration starts to cycle.
We display the maximum nonlinear residual rmax for each iteration, as well
as the maximum difference between subsequent iterations

∥∥x(k) − x(k−1)∥∥∞.
The physical parameters used for the calculations are specified in Table 5.1.
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Figure C.8.: Iterative velocity approximation on Star.
The iteration is performed until the iteration starts to cycle.
We display the maximum nonlinear residual rmax for each iteration, as well
as the maximum difference between subsequent iterations

∥∥x(k) − x(k−1)∥∥∞.
The physical parameters used for the calculations are specified in Table 5.1.
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Figure C.9.: Iterative velocity approximation on Tree.
The iteration is performed until the iteration starts to cycle.
We display the maximum nonlinear residual rmax for each iteration, as well
as the maximum difference between subsequent iterations

∥∥x(k) − x(k−1)∥∥∞.
The physical parameters used for the calculations are specified in Table 5.1.
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Figure C.10.: Iterative velocity approximation on Cycle.
The iteration is performed until the iteration starts to cycle.
We display the maximum nonlinear residual rmax for each iteration, as well
as the maximum difference between subsequent iterations

∥∥x(k) − x(k−1)∥∥∞.
The physical parameters used for the calculations are specified in Table
5.1.

74



C. Convergence Results

2 4 6 8 10 12 14 16
# iterations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

x k
x k

1

xk xk 1
nonlinear residual

0

1

2

3

4

5

no
nl

in
ea

r r
es

id
ua

lvalues in last iteration:
    xk xk 1  = 6.323e-02
    residual = 2.388e-02

Figure C.11.: Iterative velocity approximation on GasLib-11.
The iteration is performed until the iteration starts to cycle.
We display the maximum nonlinear residual rmax for each iteration, as well
as the maximum difference between subsequent iterations

∥∥x(k) − x(k−1)∥∥∞.
The physical parameters used for the calculations are specified in Table
5.1.

75



C. Convergence Results

0 5 10 15 20 25 30
# iterations

0

10

20

30

40

50

x k
x k

1

xk xk 1
nonlinear residual

0

20

40

60

80

100

no
nl

in
ea

r r
es

id
ua

lvalues in last iteration:
    xk xk 1  = 1.675e-03
    residual = 4.115e-03

Figure C.12.: Iterative velocity approximation on GasLib-24.
The iteration is performed until the iteration starts to cycle.
We display the maximum nonlinear residual rmax for each iteration, as well
as the maximum difference between subsequent iterations

∥∥x(k) − x(k−1)∥∥∞.
The physical parameters used for the calculations are specified in Table
5.1.
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(b) Iterations 7 to 59

Figure C.13.: Iterative velocity approximation on GasLib-40.
The iteration is performed until the iteration starts to cycle.
We display the maximum nonlinear residual rmax for each iteration, as well
as the maximum difference between subsequent iterations

∥∥x(k) − x(k−1)∥∥∞.
The physical parameters used for the calculations are specified in Table
5.1.
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(b) Iterations 10 to 72

Figure C.14.: Iterative velocity approximation on GasLib-134.
The iteration is performed until the iteration starts to cycle.
We display the maximum nonlinear residual rmax for each iteration, as well
as the maximum difference between subsequent iterations

∥∥x(k) − x(k−1)∥∥∞.
The physical parameters used for the calculations are specified in Table
5.1.
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(b) Iterations 10 to 100

Figure C.15.: Iterative velocity approximation on GasLib-135.
The iteration is performed until the iteration starts to cycle.
We display the maximum nonlinear residual rmax for each iteration, as well
as the maximum difference between subsequent iterations

∥∥x(k) − x(k−1)∥∥∞.
The physical parameters used for the calculations are specified in Table
5.1.
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Figure C.15.: Iterative Velocity Approximation on GasLib-135 cont.
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Abbreviation Explanation

NL-0 nonlinear calculation using BARON
without tighter variable bounds

NL-BARON nonlinear calculation using BARON
with tighter variable bounds applied

NL-SCIP nonlinear calculation using SCIP
with tighter variable bounds applied

CC-k CC formulation (see section 3.3)
with tighter variable bounds applied
k discretization points

CCLOG-k CCLOG formulation (see subsection 3.3.1)
with tighter variable bounds applied
k discretization points

DCC-k DCC formulation (see section 3.2)
with tighter variable bounds applied
k discretization points

DLOG-k DLOG formulation (see subsection 3.2.1)
with tighter variable bounds applied
k discretization points

INC-k INC formulation (see section 3.5)
with tighter variable bounds applied
k discretization points

MC-k MC formulation (see section 3.4)
with tighter variable bounds applied
k discretization points

ITERATE iterative velocity approximation (see chapter 4)
without tighter variable bounds applied

Table D.1.: Abbreviations of Solution Methods
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Solution Method rmax ∆max Time (s)

NL-0 2.81e-10 0.00e+00 0.78
NL-BARON 3.34e-10 4.36e-14 0.49
NL-SCIP 3.30e-09 2.69e-13 0.05
ITERATE 4.55e-06 8.09e-11 2.37
CC-3 8.87e+00 1.34e-03 5.35
CCLOG-3 8.37e+00 1.31e-03 1.12
CCLOG-5 2.23e+00 3.57e-04 2.52
CCLOG-7 9.41e-01 1.51e-04 6.74
DCC-3 8.87e+00 1.34e-03 7.02
DLOG-3 8.87e+00 1.34e-03 1.05
INC-3 8.37e+00 1.31e-03 4.71
MC-3 8.87e+00 1.34e-03 1.23

Table D.2.: Comparison of Approximation Methods for Transient Flow Calculations on
the Path Network

Solution Method rmax ∆max Time (s)

NL-0 4.55e-11 0.00e+00 0.57
NL-BARON 3.81e-11 7.80e-15 0.62
NL-SCIP 9.57e-09 9.76e-01 0.72
ITERATE 1.11e-06 9.76e-01 2.75
CC-3 5.02e+01 7.04e-03 5.64
CCLOG-3 7.18e+01 1.00e-02 2.70
CCLOG-5 1.46e+01 2.05e-03 1.66
CCLOG-7 6.01e+00 8.49e-04 18.87
DCC-3 5.02e+01 7.04e-03 7.54
DLOG-3 5.02e+01 7.04e-03 0.68
INC-3 7.18e+01 1.00e-02 1.96
MC-3 5.02e+01 7.04e-03 2.20

Table D.3.: Comparison of Approximation Methods for Transient Flow Calculations on
the Star Network.
We include the maximal nonlinear residual (rmax), the relative difference to
the solution NL-0 (∆max), and the solution time.
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Solution Method rmax ∆max Time (s)

NL-0 2.80e-06 0.00e+00 0.51
NL-BARON 2.88e-06 8.05e-11 0.41
NL-SCIP 2.18e-11 7.24e-11 0.06
ITERATE 3.14e-07 9.45e-11 3.36
CC-3 2.27e+00 3.42e-04 6.37
CCLOG-3 2.28e+00 3.43e-04 1.27
CCLOG-5 4.27e-01 5.51e-05 5.47
CCLOG-7 2.38e-01 3.56e-05 56.50
DCC-3 2.27e+00 3.42e-04 11.34
DLOG-3 2.27e+00 3.42e-04 5.57
INC-3 2.28e+00 3.43e-04 1.83
MC-3 2.27e+00 3.42e-04 9.33

Table D.4.: Comparison of Approximation Methods for Transient Flow Calculations on
the Tree Network.
We include the maximal nonlinear residual (rmax), the relative difference to
the solution NL-0 (∆max), and the solution time.

Solution Method rmax ∆max Time (s)

NL-0 8.14e-11 0.00e+00 0.49
NL-BARON 7.36e-07 2.74e-10 0.40
NL-SCIP 4.79e-11 7.14e-15 0.05
ITERATE 5.03e-06 2.24e-10 1.97
CC-3 2.56e-01 5.51e-04 8.91
CCLOG-3 2.52e-01 5.45e-04 2.23
CCLOG-5 6.71e-02 1.46e-04 10.41
CCLOG-7 3.02e-02 6.62e-05 17.96
DCC-3 2.56e-01 5.51e-04 8.77
DLOG-3 2.56e-01 5.51e-04 8.30
INC-3 2.52e-01 5.45e-04 5.95
MC-3 2.56e-01 5.51e-04 15.52

Table D.5.: Comparison of Approximation Methods for Transient Flow Calculations on
the Cycle Network.
We include the maximal nonlinear residual (rmax), the relative difference to
the solution NL-0 (∆max), and the solution time.
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Solution Method rmax ∆max Time (s)

NL-0 2.07e-07 0.00e+00 0.62
NL-BARON 6.44e-06 4.91e-09 0.29
NL-SCIP 4.84e-08 1.74e-10 0.19
ITERATE 2.39e-01 4.23e-08 2.51
CC-3 2.66e-01 5.85e-04 9.89
CCLOG-3 2.71e-01 5.92e-04 0.95
CCLOG-5 7.12e-02 1.62e-04 17.36
CCLOG-7 3.06e-02 6.84e-05 42.66
DCC-3 2.66e-01 5.85e-04 14.83
DLOG-3 2.66e-01 5.85e-04 6.43
INC-3 2.71e-01 5.92e-04 6.37
MC-3 2.66e-01 5.85e-04 234.02

Table D.6.: Comparison of Approximation Methods for Transient Flow Calculations on
the GasLib-11 Network.
We include the maximal nonlinear residual (rmax), the relative difference to
the solution NL-0 (∆max), and the solution time.

Solution Method rmax ∆max Time (s)

NL-0 4.02e-09 0.00e+00 1.00
NL-BARON 1.17e-09 3.13e-13 0.46
NL-SCIP 1.48e-09 6.78e-14 1.43
ITERATE 1.07e-02 5.93e-06 6.02
CC-3 timeout - 3600
CCLOG-3 5.22e+00 1.60e-04 7.26
CCLOG-5 timeout - 3600
CCLOG-7 timeout - 3600
DCC-3 timeout - 3600
DLOG-3 timeout - 3600
INC-3 5.22e+00 1.60e-04 1159.25
MC-3 timeout - 3600

Table D.7.: Comparison of Approximation Methods for Transient Flow Calculations on
the GasLib-24 Network.
We include the maximal nonlinear residual (rmax), the relative difference to
the solution NL-0 (∆max), and the solution time.
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Solution Method rmax ∆max Time (s)

NL-0 1.88e-09 0.00e+00 6.65
NL-BARON 1.16e-06 4.04e-11 0.87
NL-SCIP timeout - 3600
ITERATE 2.60e+00 3.30e-05 12.89
CC-3 timeout - 3600
CCLOG-3 2.58e+02 6.29e-02 452.96
CCLOG-5 timeout - 3600
CCLOG-7 timeout - 3600
DCC-3 timeout - 3600
DLOG-3 timeout - 3600
INC-3 timeout - 3600
MC-3 timeout - 3600

Table D.8.: Comparison of Approximation Methods for Transient Flow Calculations on
the GasLib-40 Network.
We include the maximal nonlinear residual (rmax), the relative difference to
the solution NL-0 (∆max), and the solution time.

Solution Method rmax ∆max Time (s)

NL-0 3.98e-06 0.00e+00 984.74
NL-BARON infeasible - 23.94
NL-SCIP 1.31e-10 3.43e-10 5.35
ITERATE 1.20e+00 3.28e-05 38.88
CC-3 timeout - 3600
CCLOG-3 timeout - 3600
CCLOG-5 timeout - 3600
CCLOG-7 timeout - 3600
DCC-3 timeout - 3600
DLOG-3 timeout - 3600
INC-3 timeout - 3600
MC-3 timeout - 3600

Table D.9.: Comparison of Approximation Methods for Transient Flow Calculations on
the GasLib-134 Network.
We include the maximal nonlinear residual (rmax), the relative difference to
the solution NL-0 (∆max), and the solution time.
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Solution Method rmax ∆max Time (s)

NL-0 1.70e-06 0.00e+00 372.56
NL-BARON 5.51e-09 7.47e-09 7.12
NL-SCIP timeout - 3600
ITERATE 9.14e+01 4.03e-04 71.40
CC-3 timeout - 3600
CCLOG-3 timeout - 3600
CCLOG-5 timeout - 3600
CCLOG-7 timeout - 3600
DCC-3 timeout - 3600
DLOG-3 timeout - 3600
INC-3 timeout - 3600
MC-3 timeout - 3600

Table D.10.: Comparison of Approximation Methods for Transient Flow Calculations on
the GasLib-135 Network.
We include the maximal nonlinear residual (rmax), the relative difference to
the solution NL-0 (∆max), and the solution time.
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E. Deutsche Zusammenfassung

Erdgas ist eine der meistgenutzten Energiequellen in Deutschland. Daher müssen große
Mengen an Gas von Produzenten zu Verbrauchern transportiert werden.

In dieser Arbeit vergleichen wir verschiedene Algorithmen um Fluss- und Druckwerte
in einem Gasnetzwerk zu berechnen. Im Unterschied zu sog. stationären Rechnungen, bei
welchen eine konstante Kapazität über einen unbegrenzent Zeitraum nachgefragt wird,
beschäftigen wir uns mit transienten Problemen. Gegeben sind ein Gasnetzwerk, sowie
Gaszufuhr- und Gasentnahmewerte über einen spezifizierten Zeitraum. Passend zu diesen
Bedarfswerten wollen wir Druck- und Flusswerte im Netzwerk berechnen, sodass die
gegebenen Bedarfe von der Versorgung gedeckt werden können. Die Schwierigkeit darin
besteht in dem physikalischen Verhalten von Gas. Der Gasfluss wird beschrieben durch
die sogenannten Euler-Gleichungen. Diese bestehen aus einem System von nichtlinearen
partiellen Differentialgleichungen.

Wir beschäftigen uns ausschließlich mit Rohrnetzwerken (d.h. andere Elemente wie
z.B. Kompressoren werden vernachlässigt).

Die Arbeit beginnt mit einer Einführung in das Thema und einem Literaturüberblick
zu bisherigen Linearisierungsverfahren im Gaskontext.

Im zweiten Kapitel der Arbeit führen wir die Notation sowie die physikalischen Bezie-
hungen für Gasfluss in Rohren ein. Wir besprechen die Euler Gleichungen, und leiten
eine Vereinfachung der Eulergleichungen ab (das sog. “friction dominated” Modell) und
wir berechnen, basierend auf dem implizite Box-Verfahren, die Diskretisierung die wir im
Rest der Arbeit benutzen werden.

Das dritte Kapitel führt (auf gemischt-ganzzahliger Programmierung basierende) For-
mulierungen für stückweise lineare Funktionen ein. Wir erklären wie diese stückweise
linearen Formulierungen zur Approximation der Nichtlenaritäten in den Gasflussgleichun-
gen eingesetzt werden kann.

In Kapitel 4 besprechen wir eine eigene iterative Methode zur Lösung der Gasflussglei-
chungen. Die Methode basiert auf der Linearisierung der Impulsgleichung, indem wir die
absolute Gasflussgeschwindigkeit fixieren. Diese Methode nennen wir “iterative velocity
approximation” (iterative Geschwindigkeitsapproximation). Wir beweisen Konvergenz
des Verfahrens auf einzelnen Rohren.

Im fünften Kapitel testen wir das Konvergenzverhalten von “iterative velocity approxi-
mation” auf komplexeren Netzwerken (d.h. gekoppelte Rohre). Des Weiteren vergleichen
wir die verschiedenen Ansätze zur Lösung des Gasflusssystems. Dazu vergleichen wir
Lösungsgeschwindigkeit und die Güte der Lösung (durch Messung der nichtlinearn Resi-
duums) auf neun verschiedenen Netzwerken. Wir betrachten generische Lösungsverfahren
zur Lösung nichtlinearer Programme wie sie von den Lösern SCIP und BARON eingesetzt
werden, sowie alle stückweise Linearisierungen aus dem dritten Kapitel und das “iterative
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velocity approximation” Verfahren.
Im letzten Kapitel bewerten wir unsere Ergebnisse und geben einen Ausblick in weitere

Forschungsideen.
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