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1 Introduction

1.1 Context

In algebraic complexity theory one wants to investigate computational problems in an
arithmetic model, e.g., common arithmetic operations (+,−, ·, /) count as one opera-
tion. For example one can ask how many arithmetic operations it takes to compute
a polynomial f ∈ F[X1, . . . , Xn]. For a more formal definition of computation mod-
els see [BCS97]. VP and VNP (see [BCS97] or [Bür00]) are well known complexity
classes of polynomial families in algebraic complexity theory. An analog to Cook’s fa-
mous P 6= NP hypothesis is Valiant’s hypothesis that states V P 6= V NP . Similar to
reductions in standard complexity theory the concept of p-projections (also [BCS97] or
[Bür00]) is used to find relations among these complexity classes.
What can be seen as some form of generalization of p-projections are what we will call
affine projections. A polynomial f ∈ F[X1, . . . , Xn] is said to be an affine projection of
a polynomial g ∈ F[X1, . . . , Xm] if there is a matrix A ∈ Fm×n and a vector b ∈ Fm s.t.
f(x) = g(Ax + b). Affine projections introduce a geometric notion for the problem of
computability of related polynomials. In general, deciding if a polynomial is an affine
projection of another polynomial is NP-hard [Kay12]. In his paper [Kay12] Neeraj Kayal
shows that certain instances of the affine projection problem (equivalence of polynomials)
for the determinant (g = det) polynomial can be solved in probabilistic polynomial time.
In this thesis we will deal with his approach to the problem.

1.2 The main result

The main problem that we will deal with is a special case of finding affine projections. In
compliance with [Kay12] we define the polynomial equivalence problem PolyEquiv .

Name: PolyEquiv
Input: Polynomials f(X1, . . . , Xn), g(X1, . . . , Xn) ∈ C[X1, . . . , Xn]
Output: An invertible matrix A ∈ GLn s.t. f(x) = g(Ax), if such an A exists. Else
output ’No such equivalence exists’.

What Kayal proved in [Kay12] is that there is a randomized algorithm that can solve
PolyEquiv for the determinant polynomial in polynomial time. Our concern here is
to develop the necessary means to state and understand the algorithm and to prove
its correctness. When we talk about the time that an algorithm takes, we count the
operations that it does when executed. We count additon, subtraction, multiplication,
division and evaluation of a blackbox polynomial at a chosen point as one operation
each.
In some cases the algorithm returns matrix A s.t. f(X) 6= g(AX), but we can use the
Schwart-Zippel-Lemma as a (probabilistic) check if the computed output is correct.
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Theorem 1.1 ([Kay12], Theorem 4). Under the assumption that there exists a routine
that can diagonalize a matrix with pairwise distinct eigenvalues in polynomial time,
there exists a randomized algorithm, that given an integer n and blackbox access to an
n2-variate polynomial f of degree n determines whether there exists a matrix A ∈ GLn2,
s.t.

f(X) = det(A ·X)

The running time of the algorithm is nO(1) [(polynomial) in the number of operations].

1.3 The approach

Kayal investigates the group of symmetries Gf = {A ∈ GLn(C) | f(AX) = f(X)} of a
polynomial. The group of symmetries is a so called Lie Group and we can therefore look
at its corresponding Lie algebra gf .
A central observation is that if f(X) = g(AX), then their Lie algebras are conjugate,
gf = A−1ggA. In the case of the determinant its group of symmetries has been studied
and is explicitly known ([MM59]).
The algorithm consists of 3 computational steps, of which each reduces GLn-equivalence
of f and det to certain subgroups of GLn. The first step is rather involved and uses
special properties of gdet , but it achieves to reduce GLn-equivalence to equivalence with
matrices that permute and scale the input variables (so called PSn-equivalence).
The permutation part (the discrete part) of PSn can be resolved by examining the
Hessian of f , whereas the remaining scaling can easily be resolved by evaluating f at
some carefully chosen permuation matrices.
A fourth step is added to check the correctness of the output. Unfortunately it is still
only a probabilistic test, but there is considerable effort to derandomize identity tests
for polynomials ([Sax09]).

1.4 Notation

GLn := GL(n,C)

SLn := SL(n,C)

SCn := SC(n,C) := {A ∈ GLn | A is diagonal}
PMn := PM(n,C) := {A ∈ GLn | A is a permutation matrix}
PSn := PS(n,C) := 〈PMn, SCn〉 = {A1 · . . . · Ak | k ∈ N ∧ Ai ∈ PMn ∪ SCn}
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2 Basics on polynomials

This chapter will introduce a few advanced concepts related to polynomials, and I will
give a thorough definition of what an affine projection of a polynomial is. [Bro89] is a
good reference for algebraic geometric concepts.

2.1 Algebraic geometric concepts

Our first goal is to define the notion of probability that we are refering to throughout
the thesis. Most sets that we look at are somehow defined by zero sets of polynomials
(or their complements). To put it into an algebraic geometric perspective we introduce
some of those concepts, and give them their names that are consistently used in the
literature.

Definition 2.1. Let F ∈ C[X1, . . . , Xn] be an ideal of polynomials. We call the set

V (F ) := {x ∈ Cn | ∀f ∈ F : f(x) = 0}

the zero set of F . For single polynomials f ∈ C[X1, . . . , Xn], we write

V (f) := V ({f}).

Definition 2.2. A subset M ⊆ Cn is called algebraic if

M = V (J)

for some ideal J ⊆ C[X1, . . . , Xn].

Definition 2.3. A subset M ⊆ Cn is called Zariski-closed if it is algebraic. A subset
N ⊆ Cn is called Zariski-open if its complement Cn \N is Zariski-closed.

Remark 2.4. The set of Zariski-open sets on Cn is a topology.

Proposition 2.5 ([BC13, Corollary A.35]). Any Zariski-closed set M ⊆ Cn properly
contained in Cn has measure zero in Cn.

Based on proposition 2.5 we introduce a naming that is familiar from probability theory
about sets of measure zero. This is the basis for the conecpt of probability that we use.

Definition 2.6. A property P holds for Zariski-almost-all elements of Cn if the set

{x ∈ Cn | P (x)}

is Zariski-open.

Also related to probability is the follwoing proposition, the so called Schwartz-Zippel-
Lemma. It yields an importatnt corollary that we can use to estimate the probability of
a polynomial being identical to the zero polynomial.
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Proposition 2.7 ([vG13, Lemma 6.44] (DeMillo-Lipton-Schwartz-Zippel-Lemma)). Let
S ⊆ C be a finite set with s = |S| elements, and r ∈ C[X1, . . . , Xn] a polynomial of total
degree at most d ∈ N.

1. If r 6= 0, then r has at most dsn−1 zeroes in Sn.

2. If s > d and r vanishes on Sn, then r = 0.

We get the following corollary:

Corollary 2.8. Let S ⊆ C be a finite set wit s = |S| elements, and r ∈ C[X1, . . . , Xn]
be a polynomial of total degree at most d ∈ N. If we choose a ∈ Sn uniformly random
distributed, the probability of r(a) = 0 is

prob({r(a) = 0 | a ∈ Sn}) ≤ d

s
.

The Schwartz-Zippel can be used for efficient probabilistic identity tests on polynomials.
Given f, g ∈ C[X1, . . . , Xn] we can check if f = g by plugging in uniformly distributed
random values from a finite set S ⊆ C for X1, . . . , Xn. The probability that f − g = 0
can be bounded by the previous corollary 2.8.
As a first application of this new concept of the Zariski-topology we will prove that
almost surely a random matrix A ∈ Cn×n has distinct eigenvalues. To prove this we
have to examine a rather prominent polynomial first, the discriminant.

Definition 2.9 ([Bos13]). Let f, g ∈ C[X] be polynomials

f = a0X
m + a1X

m−1 + . . .+ am

g = b0X
n + b1X

n−1 + . . .+ bn

The resultant of f and g is defined as

res (f, g) := det



a0 a1 . . . am
. . . . . . . . . . . .

a0 a1 . . . am
b0 b1 . . . bn

. . . . . . . . . . . .

b0 b1 . . . bn


∈ C(n+m)×(n+m).

The discriminant of f is defined as

disc (f) := (−1)
m(m−1)

2 res (f, f ′) .

The discriminant is a mighty tool to check if a polynomial has multiple zeros without
having to factor the polynomial first.
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Proposition 2.10 ([Bos13, Chapter 4.4, Bemerkung 3]). Let

f =
n∏
i=1

(X − αi) ∈ C[X]

be a polynomial. Then disc (f) =
∏

i<j(αi − αj)2. In particular disc (f) = 0 if and only
if f has multiple zeros.

As a consequence we can show that Zariski-almost-all matrices are diagonalizable.

Lemma 2.11. Zariski-almost-all matrices A ∈ Cn×n have pairwise distinct eigenvalues.

Proof. Let

A =

a11 . . . a1n
...

. . .
...

an1 . . . ann

 ∈ Cn×n.

We know that the eigenvalues of a matrix are the zeros of its characteristic polynomial

χ(A) = det (A−XIn).

We now want to look at χ(A) as a polynomial in the entries of A and in X, i.e.
χ(A) ∈ C[a11, . . . , ann][X]. We know that the discriminant is zero iff χ(A) has zeros
with multiplicities greater than 1, i.e. A does not have distinct eigenvalues. Thus the
set of matrices with pairwise distinct eigenvalues is nonempty and Zariski-open.

Given polynomials f1, . . . , fm we want to find a linear dependence among them, i.e. find
ai ∈ C s.t. ∑

aifi = 0

The next lemma and corollary will show that we can achieve this by evaluating the fi at
random points and solving a related system of linear equations. We will need this later
to calculate the basis of Lie algebras of polynomials. The proof is a transcription from
[Kay11].

Lemma 2.12 ([Kay11, Claim 7]). Let f1, . . . , fm ∈ C[X1, . . . , Xn]. Let

t = dim

b ∈ Cm |
∑
i∈[m]

fibi = 0

.
Consider the additional variables

Y11, . . . , Y1n, . . . , Ym1, . . . , Ymn

and the field of rational functions C(Y11, . . . , Ymn). Let P (Y1, . . . , Ym) be the matrix

P (Y1, . . . , Ym) :=

 f1(Y11, . . . , Y1n) . . . fm(Y11, . . . , Y1n)
...

. . .
...

f1(Ym1, . . . , Ymn) . . . fm(Ym1, . . . , Ymn)

 .

Then P has rank (m− t).
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Proof. Without loss of generality we assume that the first (m − t) polynomials are C-
linearly independent, i.e. f1, . . . , fm−t are linearly independent. It suffices to show that
the quadratic submatrix

P :=

 f1(Y11, . . . , Y1n) . . . fm(Y11, . . . , Y1n)
...

. . .
...

fm−t(Y(m−t)1, . . . , Y(m−t)n) . . . fm−t(Y(m−t)1, . . . , Y(m−t)n)


has rank full rank (m− t). This is equivalent to showing that det(P ) 6= 0.
We show this by induction on (m− t):
(m− t) = 1: P = (f(Y11, . . . , Y1n)) is a nonzero polynomial, hence det(P ) 6= 0.
(m− t)− 1→ (m− t): We use Laplace expansion along the first row of P and get

detP =

(m−t)∑
i=1

(−1)i+1fi(Y11, . . . , Y1n) det(P1i(Y21, . . . , Y2n, . . . , Y(m−t)1, . . . , Y(m−t)n))

where Pij is the matrix that we get by removing row i and column j from P (commonly
referred to as minor). Removing the j-th column removes one polynomial from the set
that we examine and as every subset of f1, . . . , fm−t is C-linearly independent, we can
use the induction hypothesis. Therefore det(P1i) 6= 0 for all i.
If we assume det(P ) = 0, we could then find a C-linear dependence of

f1(Y11, . . . , Y1n), . . . , fm−t(Y11, . . . , Y1n)

by plugging in random values in C for Y21, . . . , Y(m−t)n. This yields a contradiction

Corollary 2.13. For the same assumptions as in the previous lemma 2.12 for Zariski-
almost-all A = (a1, . . . , am) ∈ (Cn)m the matrix

P (a1, . . . , am) =

f1(a1) . . . fm(a1)
...

. . .
...

f1(am) . . . fm(am)

 .

has rank (m− t).

2.2 Polynomial equivalence

This section contains the very definitions that underlie the PolyEquiv problem that
we are trying to solve here.

Definition 2.14. Let f ∈ C[X1, . . . , Xn] and g ∈ C[Y1, . . . , Ym]. f is called an affine
projection of g if there exists a matrix A ∈ Cm×n and a vector b ∈ Cm, s.t.

∀x ∈ Cn : f(x) = g(Ax+ b)

If m = n, A ∈ GLn and b = 0 we say that f and g are equivalent.
Further if G ≤ GLn is a subgroup of GLn, then we we say f, g are G-equivalent if there
exists a matrix A ∈ G, s.t. f(x) = g(Ax).
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Definition 2.15. Let f ∈ C[X1, . . . , Xn] be a polynomial. We call the set

Gf := {A ∈ GLn | f(Ax) = f(x)}

the group of symmetries of f .
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3 Lie groups and Lie algebras

This chapter will give some basic definitions and theorems about Lie groups and Lie
algebras that are relevant for the algorithm.
Lie groups are geometric objects by nature, a Lie group G is usually defined as a smooth
manifold equipped with a group structure s.t. the multiplication and inverse are con-
tinuous functions on G. Historically Lie algebras have been studied as tangent spaces
to Lie groups at the identity element. Fortunately the Lie groups that are of interest
for us can be described in a much more basic manner, s.t. we can limit the geometric
prerequisites to a minimum.
What we will learn is that the symmetries Gf of a polynomial are indeed a Lie group and
we can therefore examine its associated Lie algebra gf . In particular Gdet is a Lie group
and we can study its Lie algebra gdet , what we will learn is that it is closely related to
sln the Lie algebra of SLn.
Central to this chapter will be lemma 4.5: the observation that if a polynomial f is
equivalent to a polynomial g via A ∈ GLn, i.e. f(X) = g(AX), then their Lie algebras
are conjugate:

gf = A−1ggA.

This is the foundation for the algorithm that will be described later.
[Hal03] serves as a great reference for basic matrix Lie groups, most of the proofs in this
chapter are transcriptions of proofs from this book.

3.1 General notions of Lie algebras

The most general definition of a Lie algebra is independent of any Lie groups, but we
will soon have a look at Lie algebras as tangent space to some Lie group. In this section
we simply introduce common definitions related to Lie algebras.

Definition 3.1 ([Hal03, Definition 2.36]). A finite-dimensional complex Lie algebra is
a finite-dimensional complex vector space g, together with a map

[·, ·] : g× g→ g

with the following properties:

1. [·, ·] is bilinear

2. [X, Y ] = −[Y,X] for all X, Y ∈ g

3. [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 for all X, Y, Z ∈ g

Example 3.2. The space of complex matrices Cn×n equipped with the bracket operation
[X, Y ] = XY − Y X for all X, Y ∈ Cn×n is a Lie algebra. We denote it by gln.
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Definition 3.3. Let g be a Lie algebra and h ⊆ g be a subspace. We call h a subalgebra
of g if

[H1, H2] ∈ h

for all H1, H2 ∈ h.

Definition 3.4. Let g and h be Lie algebras. A linear map φ : g → h is called a Lie
algebra homomorphism if

[φ(X), φ(Y )] = φ([X, Y ])

for all X, Y ∈ g.

Definition 3.5. Let g be a Lie algebra and let A ∈ g. The centraliser of A, denoted by
Centg (A), is defined as

Centg (A) := {X ∈ g | [A,X] = 0}

If the bracket operation is defined as in example 3.2 the centraliser of an element is the
set of its commuting matrices.
To understand the composite structure of gdet and its relation to sln we want to examine
the structure of Lie algebras of products of Lie groups.

Definition 3.6. If g1 and g2 are Lie algebras we define the direct sum of g1 and g2 as
follows:

g1 ⊕ g2 := g1 × g2

with the following bracket operation:

[(X1, X2), (Y1, Y2)] = ([X1, Y1], [X2, Y2]) for X1, Y1 ∈ g1, X2, Y2 ∈ g2

It is easy to see that the composite bracket operation defines a valid Lie algebra structure
on the product.

3.2 Matrix Lie groups and the matrix exponential

What we will learn shortly is that the symmetries of detn (a Lie group) is closely related
to SLn. We want to study its Lie algebra sln and a special form of Lie groups, the so
called matrix Lie groups, that will help us to understand sln.

Definition 3.7. A matrix Lie group is any subgroup G of GLn s.t. for any sequence
(Am)m ∈ G it holds that if (Am)m converges to a matrix A ∈ Cn×n, then either A ∈ G
or or A 6∈ GLn.

This means that matrix Lie groups are closed (in the standard topology) subgroups of
GLn.

Example 3.8. SLn is a matrix Lie group.
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Definition 3.9. For X ∈ Cn×n, we define the matrix exponential of X as

eX :=
∞∑
m=0

Xm

m!

The key to understanding the Lie algebra of a matrix Lie group lies in the matrix
exponential. Thus we will check some properties of it.

Remark 3.10 ([Hal03], Proposition 2.3 Theorem 2.11,). Let X, Y ∈ Cn×n and C ∈ GLn,
then

1. eX converges

2. If XY = Y X, then eX+X = eXeY = eY eX

3. (eX)−1 = e−X

4. d
dt
etX = XetX

5. eCXC
−1

= CeXC−1

6. det(eX) = etrace(X)

Proof. Let X ∈ Cn×n and C ∈ GLn.

1. Let ‖·‖ be a matrix norm, then

∥∥eX∥∥ =

∥∥∥∥∥
∞∑
m=0

Xm

m!

∥∥∥∥∥ ≤
∞∑
m=0

‖Xm‖
m!

≤
∞∑
m=0

‖X‖m

m!
= e‖X‖.

So this series converges absolutely and therefore it converges.

2. Let XY = Y X. We get

(X + Y )m =
m∑
k=0

m!

k!(m− k)!
XkY m−k.

Now we look at eXeY :

eXeY =
∞∑
m=0

m∑
k=0

Xk

k!

Y m−k

(m− k)!

=
∞∑
m=0

1

m!

m∑
k=0

m!

k!(m− k)!
XkY m−k

=
∞∑
m=0

(X + Y )m

m!
= eX+Y .
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3. X and −X commute, thus by the previous point

eXe−X = eX−X = e0.

4. By its definition every entry of etX is a convergent power series and we can differ-
entiate etX in every entry term by term.

d

dt
etX =

d

dt

∞∑
m=0

tmXm

m!

=
∞∑
m=0

d

dt

tmXm

m!

=
∞∑
m=0

m · t
m−1Xm

m!

=
∞∑
m=1

X
tm−1Xm−1

(m− 1)!

= XetX

5. We note that
(CXC−1)m = CXmC−1.

Therefore

eCXC
−1

=
∞∑
m=0

(CXC−1)m

m!
=

∞∑
m=0

CXmC−1

m!
= CeXC−1.

6. LetX be diagonalizable, then we findA ∈ GLn s.t. AXA−1 = D = diag (d1, . . . , dn)
is diagonal. We get

det (eX) = det (eA
−1DA) = det (A−1eDA)

= det (A−1) det (A) det (eD) = det (diag
(
ed1 , . . . , ed2

)
)

=
n∏
i=1

edi = e
∑n
i=1 di = etrace(D) = etrace(X).

The set of diagonalizable matrices is dense in Cn×n, therefore by continouity this
holds for all X ∈ Cn×n.

A little deeper than the previously mentioned propertious of the matrix exponential is
given here, a proof will not be given.

Proposition 3.11 ([Hal03], Theorem 2.10 (Lie Product Formula)). Let X, Y ∈ Cn×n,
then

eX+Y = lim
m→∞

(e
X
m e

Y
m )m
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Proof. See [Hal03].

Definition 3.12. Let G be a matrix Lie group. The Lie algebra of G, denoted g is
defined as

g :=
{
X ∈ Cn×n | ∀t ∈ R : etX ∈ G

}
As a side note it is nice to know, that this definition of Lie algebra actually defines the
tangent space to the matrix Lie group at the identity. To see this just note that etA is
a smooth curve for each A and for each invertible matrix X you can actually find an A
s.t. X = eA (we will not prove this here).
What remains to show is that our new definition of Lie algebra matches with the general
one from the previous chapter.

Remark 3.13 ([Hal03, Theorem 2.18]). A Lie algebra (in the sense of definition 3.12)
g of a matrix Lie group G is a Lie algebra (in the sense of definition 3.1) equipped with
the bracket operation [X, Y ] = XY − Y X for all X, Y ∈ g.

Proof. First we want to show, that g is a linear subspace of Cn×n. This implies that it
is closed.
0 ∈ g because e0 = In ∈ G.
Let s ∈ C be an arbitrary scalar, and X ∈ g, we know that for all t ∈ R es(tX) = e(st)X ∈
g.
Let X, Y ∈ g, then

et(X+Y ) =︸︷︷︸
3.11

lim
m→∞

(et
X
m e

tY
m )m

G is a group thus for all m ∈ N e
tX
m e

tY
m ∈ G. Also et(X+Y ) is invertible by 3.10. So by

definition of a matrix Lie group we get limm→∞(e
tX
m e

tY
m )m ∈ G.

To show XY − Y X ∈ g, we look at the derivative

d

dt
etXY e−tX |t=0 =

(
(XY )e−tX + (etXY )(−X)

)
|t=0 = XY − Y X.

Using matrix exponential properties we get

ee
tXY e−tX = etXeY e−tX ∈ G.

So by the definition of the derivative

XY − Y X = lim
h→0

ehXY e−hX − Y
h

∈ g

because g is closed.

Finally we can determine sln by using the properties of the matrix exponential.

Corollary 3.14. The Lie algebra of SLn denoted by sln is given by

sln :=
{
A ∈ Cn×n | trace (A) = 0

}

15



Proof. By definition of a Lie algebra A ∈ sln if for all t ∈ R we have etA ∈ SLn, thus
with remark 3.10

det (etA) = etrace(tA) = et·trace(A)
!
= 1.

So A ∈ sln if and only if ∀t ∈ R : t · trace (A) = 0 ⇐⇒ trace (A) = 0.

We have already defined a bracket operation on the product Lie algebras, thus we can
check that this fulfills indeed all properties of definition 3.1. As a consequence the Lie
algebra of a direct product of matrix Lie groups is just the direct sum of the Lie algebras
of the factors.

Remark 3.15. Let G1 ⊆ GLn1 and G2 ⊆ GLn2 be matrix Lie groups with corresponding
Lie algebras g1, g2. Then G1 ×G2 ⊆ GLn1+n2 is a matrix Lie group and its Lie algebra
is g1 ⊕ g2.

Theorem 3.16 ([Hal03, Theorem 2.21]). Let G and H be matrix Lie groups, with Lie
algebras g and h, respectively. Let Φ : G→ H be a smooth group homomorphism. Then,
its derivative φ(X) := d

dt
Φ(etX) is the unique Lie algebra homomorphism φ : g→ h s.t.

Φ(eX) = eφ(X)

for all X ∈ g. φ has the special property:

φ(AXA−1) = Φ(A)φ(X)Φ(A)−1 for all X ∈ g, A ∈ G

Proof. See [Hal03].
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4 Lie algebras of polynomials

After a rather short introduction to matrix Lie group we are ready to examine the
objects of our actual interests. It is important to notice that the symmetry groups of
polynomials are matrix Lie groups.
This section is meant to ground Kayal’s observations about the group of symmetries of
the determinant directly on the fundament of matrix Lie groups, that we just developed.
Let us reconsider our problem for an instant:
Given f, g ∈ C[X1, . . . , Xn] we want to find A ∈ GLn s.t. f(X) = g(AX).
There are two important lemmas in this section that will help us on our quest of finding
A.
The first lemma (4.5) states that

gf = A−1ggA

which is the basis to understanding why we consider the Lie algebras gf and gg to find
A.
The second lemma (4.12) is more specific to the determinant polynomial, and has a more
subtle consequence that we will only understand later. Nonetheless it is important to
remember for the later proofs:
For Zariski-almost-all elements A in its Lie algebra gdet , we can find an element S in its
group of symmetries Gdet s.t. SAS−1 is a diagonal matrix.

4.1 Symmetries of a polynomial as matrix Lie groups

The symmetries of a polynomial (defintion 2.15) are a subgroup of GLn, what we will
show now, is that these symmetries are closed in the standard topology and hence are
matrix Lie groups.

Theorem 4.1. Let f ∈ C[X1, . . . , Xn]. Then its group of symmetries Gf ⊆ GLn is a
matrix Lie group. The corresponding Lie algebra is denoted by gf .

Proof. Let f ∈ C[X1, . . . , Xn] be a polynomial. Due to the fact that polynomials are
continuous in the standard topology we can do the following:
Let (Am)m ⊆ Gf be a converging sequence in Gf , and let A = limm→∞Am ∈ Cn×n. Then
we know that

f(AX) = f( lim
m→∞

AmX)

= lim
m→∞

f(AmX) = f(X)

Hence A ∈ Gf . Thus Gf is a matrix Lie group.

Lie algebras are vector spaces and therefore have a basis. The next theorem will give
us a system of linear equations that describe the Lie algebra of the symmetries of a
polynomial. Solving these equations will lead to an algorithm that can find a basis for
the Lie algebra in random polynomial time.
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Theorem 4.2 ([Kay12, Claim 59]). Let f ∈ C[X1, . . . , Xn], then A = (aij) ∈ gf if and
only if ∑

i,j∈[n]

aijXj
∂f

∂Xi

= 0 (1)

Proof. Let assume A ∈ Cn×n. Define f̂(t) = f(etAx)− f(x) ∈ C[X1, . . . , Xn][t] First we
have a look at the derivative and note

d

dt
f̂(t) =

d

dt
f(etAx) = f ′(etAx) · A · etA · x, (2)

where f ′ denotes the gradient (∂f/∂X1, . . . , ∂f/∂Xn) of f . Now A ∈ gf , i.e. for all

t ∈ R f(etAx) = f(x). Hence f̂ = f(etAx) − f(x) = 0 is the zero polynomial, so its
derivative is also the zero polynomial.
On the other hand,

0 =
d

dt
(f(etAx)− f(x))|t=0 = (f ′(etAx)AetAx)|t=0

= f ′(x)Ax

=
∑
i,j∈[n]

aijXj
∂f

∂Xi

.

For the reverse direction let A ∈ Cn×n be s.t. equation (1) holds. We substitute x 7→ etAx
and get

0 =
∑
i,j∈[n]

aij(e
tAx)j

∂f

∂Xi

(etAx) = f ′(etA)AetAx =︸︷︷︸
(2)

d

dt
f̂

As a consequence f̂ is constant, also f̂(0) = f(e0Ax) − f(x) = 0, therefore f̂(t) = 0 for
all t ∈ R, so ∀t ∈ R : etA ∈ Gf . By the definition of the Lie algebra we have A ∈ gf .

We will now present another equivalent description of gf . [Kay12] uses this as definition,
and we will relate this to our previous examination of gf , we will also use this to prove
a fact about Lie algebra conjugacy.

Lemma 4.3 ([Kay12, Lemma 22]). Let f ∈ C[X1, . . . , Xn] and ε 6= 0 be an artificial
variable s.t. ε2 = 0. Then A ∈ gf if and only if f((In + εA)X) = f(x).

Proof. We have a look at f((In + A)X)− f(X) and claim:

Claim 4.4 ([Kay12, Claim 59]). f((In + A)X)− f(X) = ε(
∑

i,j∈[n] aijXj
∂f
∂Xi

)

Proof of claim. It is sufficient to show this if f is a monomial, f =
∏

i=1X
ki
i . Let δij

18



denote the Kronecker-Delta.

f ((In + εA)X) = f

(
n∑
j=1

(δ1j + εa1j)Xj, . . . ,

n∑
j=1

(δnj + εanj)Xj

)

=
n∏
i=1

(
n∑
j=1

(δij + εaij)Xj

)ki

=
n∏
i=1

(
Xi + ε

(
n∑
j=1

aijXj

))ki

=
n∏
i=1

(
Xki
i + εXki−1

i ki

(
n∑
j=1

aijXj

))

=
n∏
i=1

Xki
i + ε

n∑
i=1

(
ki

n∏
m=1

X
ki−δmj
i

(
n∑
j=1

aijXj

))

=
n∏
i=1

Xki
i + ε

n∑
i=1

(
∂f

∂Xi

(
n∑
j=1

aijXj

))

=
n∏
i=1

Xki
i + ε

∑
i,j∈[n]

aijXj
∂f

∂Xi



From the claim we conclude with theorem 4.2 f((In + A)X) − f(X) = 0 if and only if
A ∈ gf .

Finally we arrive at the central lemma that is the fundament of the final algorithm. Lie
algebras of equivalent polynomials are conjugate via their transformation matrix. The
proof of this lemma is a transcription from [Kay12].

Lemma 4.5 ([Kay12, Proposition 58]). Let f, g ∈ C[X1, . . . , Xn]. If there exists a
nonsingular matrix A ∈ GLn s.t. f(X) = g(AX), then their Lie algebras are conjugate
via A, i.e.

gf = A−1ggA (3)

Proof. Let B ∈ gf . We note that

B ∈ A−1ggA ⇐⇒ ABA−1 ∈ gg

Hence we look at

g((In + εABA−1)x) = g(A(A−1 + εBA−1)x)

f(x)=g(Ax)
= f((A−1 + εBA−1)x)

= f((In + εB)A−1x)

B∈gf
= f(A−1x) = g(AA−1x) = g(x)
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This implies ABA−1 ∈ gg. The reverse direction works in the same way.

From the previous lemma we can deduce that the centralisers of conjugate elements are
conjugate.

Corollary 4.6. Let f, g ∈ C[X1, . . . , Xn]. If f(x) = g(AX) for some A ∈ GLn, and let
B ∈ gf . Then there exists C ∈ gg, s.t.

Cent (B) = A−1Cent (C)A

Proof. Let B ∈ gf , then by the previous lemma 4.5 C := ABA−1 ∈ gf . Let D ∈
Cent (C), then we have

[B,A−1DA] = BA−1DA− A−1DAB = A−1 (ABA−1D −DABA−1)︸ ︷︷ ︸
=0

A = 0.

This implies that A−1DA ∈ Cent (B), hence we get Cent (B) ⊇ A−1Cent (C)A.
The reverse direction works in the same way.

4.2 The Lie algebra of the determinant polynomial

This chapter is dedicated to examine the Lie group and Lie algebra of the determinant
polynomial detn ∈ C[X11, . . . , Xnn].
There have been several attempts to describe the symmetry group Gdet, a rather short
and basic overview is given in [MM59] a thorough examination can be found in [Rei16].

Theorem 4.7 ([MM59, Theorem 2]). Let T : Fn×n → Fn×n be a linear transformation
of matrices. If T preserves det, i.e.

∀M ∈ Fn×n : detM = detT (M)

then there exist matrices U, V ∈ SLn s.t. for all X ∈ Fn×n either

T (X) = UXV

or
T (X) = UXTV

Theorem 4.7 will gives us the opportunity to embed the structure into GLn2 . Thanks to
our previous investigation of Lie algebras in relation to Lie groups we can easily deduce
the structure of gdet .

Corollary 4.8. The Lie algebra of the determinant gdet is isomorphic to sln ⊕ sln via
the isomorphism

φ : sln ⊕ sln → gdet

(A,B) 7→ (X 7→ AX +XBT )

20



Proof. We define the group homomorphism

Φ : SLn × SLn → Gdet
(A,B) 7→ (X 7→ AXBT ).

Hint: We identify End (Cn×n) ∼= Cn2×n2
.

By theorem 4.7 Φ maps SLn × SLn to Gdet . Theorem 3.16 tells us that

φ : sln ⊗ sln → gdet

(A,B) 7→ d

dt
Φ(etX)|t=0 =

d

dt
(X 7→ etAXetB

T

)|t=0

= (X 7→ AX +XBT )

is a Lie algebra homomorphism. Now we show that φ is injective by showing that
kerφ = {(0, 0)}. Asuume A,B ∈ sln s.t. φ(A,B) = 0. This means

∀X ∈ Cn×n : φ(A,B)(X) = 0.

First we only consider diagonal matrices X = diag (x1, . . . , xn) ∈ Cn×n:

0
!
= φ(A,B)(X) = AX +XBT

=

a11 . . . a1n
...

. . .
...

an1 . . . ann

 diag (x1, . . . , xn) + diag (x1, . . . , xn)

b11 . . . bn1
...

. . .
...

b1n . . . ann


=

a11x1 + b11x1 a12x2 + b21x1 . . . a1nxn + bn1x1
...

...
. . .

...
an1x1 + b1nxn an2x2 + b2nxn . . . annxn + bnnxn


Thus for aij = bji = 0 for i 6= j. And then with X ∈ Cn×n arbitrary:

0
!
= diag (a11, a22, . . . , ann)

x11 . . . x1n
...

. . .
...

xn1 . . . xnn

+

x11 . . . x1n
...

. . .
...

xn1 . . . xnn

 diag (b11, b22, . . . , bnn)

=

(a11 + b11)x11 (a11 + b22)x12 . . . (a11 + bnn)x1n
...

...
. . .

...
(ann + b11)x11 (ann + b22)xn2 . . . (ann + bnn)xnn


A consequence of this is a11 = . . . = ann and b11 = . . . = bnn. We also know

trace (A) =
∑

aii = na11 = 0 = nb11 =
∑

bii = trace (B) ,

hence aii = bii = 0. We have thus shown that φ is injective.
We already know, that dim sln ⊕ sln = dim gdet , therefore φ is an isomorphism.
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An interesting property of sln is that if we take a generic element from A ∈ sln, then A
can be diagonalized with high probability, and the transformation matrix is in SLn.

Lemma 4.9. For Zariski-almost-all elements A ∈ sln we can find S ∈ SLn, s.t.

SAS−1 is diagonal

Proof. By lemma 2.11 Zariski-almost-all matrices have distinct eigenvalues and the in-
tersection of the set of diagonal matrices with distinct eigenvalues with sln is non-empty,
consider for example

M := diag

(
1, 2, . . . , n− 1,−

n−1∑
k=1

k

)
∈ sln

So the property transfers to sln and Zariski-almost all matrices in sln have distinct
eigenvalues.
Now let A ∈ sln with distinct eigenvalues. Then A is diagonalizable with some matrix
U in GLn.

diag (d1, . . . , dn) = UAU−1 =

(
1

detU
U

)
︸ ︷︷ ︸

∈SLn

A (detUU−1)︸ ︷︷ ︸
∈SLn

Remark 4.10. The centralizer of a diagonal matrix A = diag (a11, . . . , ann) with aii 6=
ajj (distinct diagonal elements) is a set of diagonal matrices.

Proof. Let X ∈ Cent (A), then we get

(aii − ajj)xij = 0.

Thus xij = 0 for all i 6= j and X is a diagonal matrix.

Remark 4.11. The dimension of gdet is (2n2 − 2) and for Zariski-almost-all A ∈ gdet
the dimension of its centralizer Cent (A) is (2n− 2).

Proof. The dimension of sln is n2 − 1, so by corollary 4.8 the dimension of sln ⊕ sln is
(n2 − 1) + (n2 − 1) = 2n2 − 2.
Zariski-almost-all A ∈ sln are diagonalizable, so Cent (A) is conjugate to the centraliser
of a diagonal matrix D. The centralizer of a diagonal matrix consists of diagonal ma-
trices (remark 4.10). The additional constraint trace (X) = 0 for all X ∈ sln yields
dim Cent (A) = dim Cent (D) = n − 1. The bracket operation on sln ⊕ sln acts compo-
nentwise, So for A,B ∈ sln ⊕ sln we have Cent ((A,B)) = Cent (A) ⊕ Cent (B). This
yields the claim.

Lemma 4.12 ([Kay12], Proposition 65). For Zariski-almost all A ∈ gdet there exists an
S ∈ Gdet s.t.

S−1Cent (A)S

is a set of diagonal matrices.
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Proof. Let A ∈ gdet and let Φ and φ be defined as in the proof of corollary 4.8:

Φ : SLn × SLn → Gdet
(A,B) 7→ (X 7→ AXBT )

φ : sln ⊕ sln → gdet

(A,B) 7→ (X 7→ AX +XBT )

By corollary 4.8 φ is an isomorphism so there exist (A1, B1) ∈ sln⊕sln s.t. φ(A1, A2) = A.
Remark 4.9 tells us that for Zariski-almost-all A1, A2 ∈ sln we can find S1, S2 ∈ SLn s.t.
S1A1S

−1
1 , S2A2S

−1
2 are diagonal matrices. By theorem 3.16 we get

Φ(S1, S2)AΦ(S1, S2)
−1 = Φ(S1, S2)φ(A1, A2)Φ(S1, S2)

−1 (4)

= φ(S1AS
−1
1 , S2A2S

−1
2 ). (5)

Next we show that φ maps diagonal matrices to diagonal matrices. Let (C,D) ∈ sln⊕sln
be diagonal matrices, then

φ(C,D)(X) = (CX +XDT )

=


(c11 + d11)X11 (c11 + d22)X12 . . . (c11 + dnn)X1n

(c22 + d11)X21 (c22 + d22)X22 . . . (c22 + dnn)X2n
...

...
. . .

...
(cnn + d11)Xn1 (cnn + d22)Xn2 . . . (cnn + dnn)Xnn



=


(c11 + d11) 0 0 . . . 0

0 (c11 + d22) 0 . . . 0
...

... 0
. . .

...
0 0 . . . 0 (cnn + bnn)

 ·

X11

X12
...

Xnn


Theorem 4.7 tells us that Φ(S1, S2) ∈ Gdet . Together with (5) this proves the claim.
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5 Algorithmic subprocedures

In this section we will have a look at various subprocedures that will assist us in solving
PolyEquiv .

Before we dive into details, a short note about random choices that are made in the
subrocedures. We will always assume that random values are uniformly chosen from
some finite subset S ⊆ C.
If a polynomial is given by its coefficient list, it is a trivial task to compute its partial
derivatives, but we only want to assume that a polynomial is given as a blockbox. The
following algorithm can give us a blackbox for any partial derivative of a given polynomial
f ∈ C[X1, . . . , Xn].

Algorithm 5.1 Compute partial derivative of a polynomial

Input: Blackbox access to f ∈ C[X1, . . . , Xn] of known degree d, i ∈ [n],
a ∈ Cn point at which to evaluate ∂f

∂Xi

Output: ∂f
∂Xi

(a)

Step (i): Calculate f̂(Xi) := f(a1, . . . , Xi + ai, . . . , an) using polynomial in-
terpolation.

Step (ii): Return ∂f̂
∂Xi

(0).

Proposition 5.1 ([Kay12, Proposition 18]). Let f ∈ C[X1, . . . , Xn] be an n-variate
polynomial of degree d. Given blackbox access to f , algorithm 5.1 gives blackbox access
to any derivative ∂f

∂Xi
of f in Poly (dn) time.

Proof. W.l.o.g. i = 1. Let f ∈ C[X1, . . . , Xn]. We write f as

f =
d∑
j=0

fj(X2, . . . , Xn)Xj
1 ∈ C[X2, . . . , Xn][X1].

We define

f̂(X1) = f(a1 +X1, a2, . . . , an) =
d∑
j=0

fj(a2, . . . , an)(X1 + a1)
j.

We can interpolate f̂(X1) by evaluating f̂ at d + 1 points {b1, . . . , bd+1}. We get the
system of linear equations

d∑
j=0

fj(a2, . . . , an)(bk + a1)
j = f̂(bk), for k = 1, . . . , d+ 1

and can solve for the fj(a2, . . . , an).
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With those coefficients and we can easily find the derivative of f̂ , by the standard
method:

∂f̂

∂X1

=
d∑
j=1

j · fj(a2, . . . , an)(X1 + a1)
j−1.

As a consequence we can evalute ∂f
∂Xi

at the point a by evaluating ∂f̂
∂Xi

(0):

∂f

∂X1

(a1, . . . , an) =
d∑
j=1

j · fj(a2, . . . , an)aj−11

=
d∑
j=1

j · fj(a2, . . . , an)(0 + a1)
j−1 =

∂f̂

∂X1

(0).

Lie algebras are vector spaces, hence we can use their bases to describe and compare
them. What we will learn now is that computing the Lie algebra of a polynomial
reduces to finding linear dependencies among a set of polynomials related to its partial
derivatives. Remembering that lemma 2.12 yields a basis to the kernel of the linear
dependencies we can formulate an algorithm.

Algorithm 5.2 Compute basis for the Lie algebra of a polynomial

Input: f ∈ C[X1, . . . , Xn]
Output: Return A1, . . . , Ak a basis for gf .

Step (i): Compute the polynomials fij := Xj
∂f
∂Xi

using algorithm 5.1.

Step (ii): Let {b1, . . . , bn2} ⊆ Cn be a set of distinct random values in Cn.
Return a basis for the kernel of M = (fij(bi))i,j∈[m].

Proposition 5.2 ([Kay12, Lemma 22]). Given an n-variate polynomial f(X) ∈ C[X1, . . . , Xn],
algorithm 5.2 computes with high probability a basis for the Lie algebra of its group of
symmetries gf in polynomial time.

Proof. From theorem 4.2 we know, that A ∈ gf if and only if∑
i,j∈[n]

aijXj
∂f

∂Xi

= 0 (6)

Choose a set {b11, . . . , bnn} ⊆ Cn×n of size n2 randomly. Define the matrix

P (b11, . . . , bnn) =


(
X1

∂f
∂X1

)
(b11) . . .

(
Xn

∂f
∂Xn

)
(b11)

...
. . .

...(
X1

∂f
∂X1

)
(bnn) . . .

(
Xn

∂f
∂Xn

)
(bnn)

 ∈ Cn2×n2

.

By corollary 2.13 the basis of P (b11, . . . , bnn) yields a basis for the solution space of (6)
for Zariski-almost-all bij. Lemma 4.2 tell us that a basis of (6) is also a basis for the Lie
algebra gf .
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The centralizer of an element in a Lie algebra is a vector space. We can directly derive
a system of linear equations from its definition. Solving the system yields a basis.

Algorithm 5.3 Compute basis of centralizer

Input: A = (aij)1≤i,j≤n ∈ Cn×n

Output: Return X1, . . . , Xm, s.t. the Xi are a basis for Cent (A).

Step (i): Compute a basis for the kernel of AX −XA, i.e. solve the system
of n2 linear equations given by

n∑
l=1

ailXli −
n∑
k=1

akjXjk = 0, ∀i, j ∈ [n] (7)

using linear algebra. Return basis X1, . . . , Xk.

Proposition 5.3 ([Kay12, Fact 24]). Let g ⊆ Cn×n be a Lie algebra, with the bracket
operation defined as [A,B] = AB − BA. Let A ∈ g, then algorithm 5.3 computes
Cent (A) in polynomial time.

Proof. Let A = (aij) ∈ g and B = (bij)i,j∈[n] ∈ Cent (A). By definition 3.5 this is
equivalent to

AB −BA = 0

Simple expansion of the matrix multiplication and the difference yields

[A,B]ij =
n∑
l=1

ailbli −
n∑
k=1

akjbjk = 0, ∀i, j ∈ [n]

as equivalent condition to B ∈ Cent (A). Hence every B ∈ Cent (A) fulfills (7). The
converse is also true, if X ∈ Cn×n fulfills the system defined by (7), then [A,X] =
AX −XA = 0 and therefore X ∈ Cent (A).
So a basis of the solution space for (7) is a basis for Cent (A), and can be computed in
polynomial time by using Gaussian elimination.

Another subroutine that Kayal uses in [Kay12] is related to matrix diagonalization. As
Neeraj Kayal puts it in [Kay12, p. 24]:

The second step of this algorithm, viz. simultaneous diagonalization of a set
of (commuting) matrices is a standard linear algebra computation and can
easily be accomplished in poly(n) time.

Diagonalization is in fact a subroutine, commonly used in numerical computations, but
we are interested in an exact (algebraic) algorithm. To the author no such algorithm is
known, but as it turns out, there exists an algorithm that can compute the eigenvalues
and eigenspaces of a matrix up to a relative error bound of 2−b in O(n3 +(n log2 n) log b)
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arithmetic steps ([PC99]). Unfortunately this does not solve the problem completely, so
we will simply assume the existence of a hypothetical polynomial time diagonalization
algorithm.

Remark 5.4. We assume the existence of an algorithm that can diagonalize a matrix
in polynomial time.
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6 The Algorithm

Let us quickly recall what we are trying to achieve. We are given a polynomial f ∈
C[X11, . . . , Xnn] and want to find an invertible matrix A ∈ GLn2 s.t. f(X) = det (A ·X),
if such a matrix exists.
As a result of this, the Lie algebras gf and gdet are conjugate via A:

gf = A−1gdetA.

As stated in previous chapters the main idea of the algorithm is to find the conjugation
matrix A of gdet and gf . We will find such a matrix with three seperate computation
steps. There will be a fourth step that checks if the matrix A that we might have found
indeed gives us the polynomial f from det.
In each step of the algorithm we will reduce the set of possible transformation matrices
from a subgroup G ≤ GLn to a proper subgroup H ≤ G.
For this we recall the definitions of PSn and SCn, the set of matrices that permute and
scale and the set of scaling matrices respectively.
In our first step we will reduce an equivalence relation in GLn, i.e. A ∈ GLn to an
equivalence relation in PSn, i.e. A ∈ PSn. The algorithm works as follows:

Algorithm 6.4 Reduce GLn-equivalence to PSn-equivalence

Input: f ∈ C[X11, . . . , Xnn]

Output: If f is GLn-equivalent to detn, we return a matrix D ∈ GLn, s.t.
f(DX) is PSn-equivalent to detn.

Step (i): Compute a basis A1, . . . , Ak ∈ gln of gf using algorithm 5.2. If
k 6= (2n2 − 2), return ’not equivalent to determinant’.

Step (ii): Pick B ∈ gf randomly and compute a basis X1, . . . , Xk of Cent (B)
using algorithm 5.3. If k 6= (2n − 2) return ’not equivalent to

determinant’.

Step (iii): Compute a matrix D ∈ GLn that simultaneously diagonalizes
X1, . . . , X2n−2 using the hypothetical algorithm from remark 5.4.
If D doesn’t exist, return ’not equivalent to determinant’.

Proposition 6.1 ([Kay12, Proposition 45]). Let f ∈ K[X11, . . . , Xnn] be a polynomial.
Let D ∈ Cn2×n2

be the output of algorithm 6.4. If f is GLn-equivalent to detn, then with
high probability f(DX) is PSn-equivalent to detn.

Proof. Let f be GLn-equivalent to detn, by theorem 4.5 then there exists a matrix
A ∈ GLn2 s.t.

gf = A−1gdetA

Proposition 5.2 ensures that (I) can be accomplished by algorithm 5.2. By lemma 4.11
the dimension of gdet is (2n2 − 2), so let A1, . . . , An2−2 be a basis for gf .
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Let B ∈ gf a random element. The correctness of step (II) follows from proposition 5.3
and remark 4.11. Let X1, . . . , X2n−2 be the basis of Cent (B). With high probability we
can find a matrix D ∈ GLn2 that diagonalizes B, i.e. DBD−1 is diagonal and its diagonal
entries are distinct. By remark 4.10 Cent (DBD−1) is a set of diagonal matrices. For
each i ∈ [2n− 2] we have

[DBD−1, DXD−1] = DBD−1DXiD
−1 −DXiD

−1DBD−1

= D(BXi −XiB)D−1 = 0

Thus DXiD
−1 ∈ Cent (DBD−1) is diagonal for all i ∈ [2n− 2].

As gf and gdet are conjugate via A there exists a matrix C ∈ gdet , s.t. B = A−1CA, i.e.
Corollary 4.6 also gives us that the centralisers of B and C are conjugate, hence

D−1Cent (B)D = D−1A−1Cent (C)AD (8)

= (AD)−1Cent (C) (AD). (9)

What we conclude from this is that AD diagonalizes Cent (C).
By lemma 4.12 there exists a matrix S ∈ Gdetn , that diagonalizes the centraliser of C:

S−1Cent (C)S is a set of diagonal matrices.

We define
Z := S−1AD

We now want to show that Z ∈ PSn. Take a look at

Z(D−1Cent (B)D)Z−1 = (S−1AD)(D−1Cent (B)D)(S−1AD)−1

(9)
= (S−1AD)((AD)−1Cent (C) (AD))((AD)−1S)

= S−1Cent (C)S

Hence Z−1 diagonalizes D−1Cent (B)D, which is already a set of diagonal matrices. As
a consequence Z can only be a permutation or scaling of the matrices in D−1Cent (B)D.
Thus Z ∈ PSn. The fact that S ∈ Gdetn yields:

f(DX) = det(ADX)

= det(SZX)

= det(S(ZX))

= det(ZX)

In particular f(DX) is PSn-equivalent to detn.

Now that we have reduced general GLn-equivalence to PSn-equivalence we now want
to get rid of the permutation part (the discrete part) of PSn. What will assist us with
this are the partial derivatives of the polynomial f . We make the following observation
about the partial derivatives of det: second order partial derivatives of det on the same
row or column vanish.
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Lemma 6.2.
∂2 det

∂Xij∂Xkl

{
= 0 if i = k ∨ j = l

6= 0 else

Proof. Let i, j, k, l ∈ [n]. We take a look at the Leibniz formula for the determinant and
we note that:

∂ det

∂Xij

=
∂

∂Xij

∑
σ∈Sn

sgn (σ)
n∏

m=1

Xmσ(m)

=
∑
σ∈Sn

sgn (σ)
∂

∂Xij

n∏
m=1

Xmσ(m)︸ ︷︷ ︸
6=0⇐⇒ σ(i)=j

=
∑

σ∈Sn:σ(i)=j

sgn (σ)
∏

m∈[n]:m 6=i

We consider two cases:
1. Case: (i, j) = (k, l)

∂ det

∂Xij∂Xij

=
∂

∂Xij

∑
σ∈Sn:σ(i)=j

sgn (σ)
∏

m∈[n]:m 6=i

Xmσ(m)

=
∑

σ∈Sn:σ(i)=j

sgn (σ)
∂

∂Xij

∏
m∈[n]:m 6=i

Xmσ(m)︸ ︷︷ ︸
=0

= 0

2. Case: (i, j) 6= (k, l)

∂ det

∂Xij∂Xkl

=
∂

∂Xkl

∑
σ∈Sn:σ(i)=j

sgn (σ)
∏

m∈[n]:m 6=i

Xmσ(m)

=
∑

σ∈Sn:σ(i)=j

sgn (σ)
∂

∂Xkl

∏
m∈[n]:m 6=i

Xmσ(m)︸ ︷︷ ︸
=0⇐⇒ σ(k)=l

=
∑

σ∈Sn:σ(i)=j,σ(k)=l

sgn (σ)
∏

m∈[n]:m6=i,m 6=k

Xmσ(m)

The set {σ ∈ Sn | σ(i) = j, σ(k) = l} is empty if and only if either i = k or j = l, because
permutations are bijections.
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The lemma carries over to the second order partial derivatives of the projection f s.t.
if the derivative ∂2f

∂Xij∂Xkl
vanishes we know that Xij and Xkl are in the same row or

column. By identifying the variables of the first row and column in the input matrix,
we can then assign the rest of the variables to their appropriate position.

Algorithm 6.5 Reducing PSn-equivalence to SCn-equivalence

Input: f ∈ F[X11, . . . , Xnn]

Output: If f is PSn-equivalent to detn, we return a permutation σ ∈ S[n]×[n],
s.t. f(σ(X)) is SCn-equivalent to detn

Step (i): Set π(1, 1) = (1, 1).

Step (ii): Find set A ⊆ ([n]× [n] \ {(1, 1)}) of size (2n− 2), s.t.

∂2f

∂X11∂Xij

= 0

Calculate partial derivatives with algorithm 5.1. If A does not exist
return ’not equivalent to determinant’.

Step (iii): Partition A into two sets R and C of size (n− 1), s.t.

∂2f

∂Xij∂Xkl


= 0 if (i, j) ∈ R and (k, l) ∈ R,
= 0 if (i, j) ∈ C and (k, l) ∈ C,
6= 0 if (i, j) ∈ R and (k, l) ∈ C

(10)

by calculating the partial derivatives with algorithm 5.1 If no such
partition exists, return ’not equivalent to determinant’.

Step (iv): Let R = {(i1, j1), . . . , (in−1, jn−1)} and let C =
{(k1, l1), . . . , (kn−1, ln−1)}. For all m ∈ [n− 1] set

π(1,m+ 1) = (km, lm)

π(m+ 1, 1) = (im, jm)

Step (v): For each (i, j) ∈ ([n] × [n]) \ ({(1, 1)} ∪ R ∪ C) find a unique pair
(ir, jr) ∈ R and (ks, ls) ∈ C, s.t.

∂2f

∂Xij∂Xkrlr

=
∂2f

∂Xij∂Xirjr

= 0

If the pair is not unique, return ’not equivalent to

determinant’. Set
π(r, s) = (i, j)

Return σ := π−1.
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Proposition 6.3 ([Kay12, Proposition 41]). Let f ∈ C[X11, . . . , Xnn] be PSn-equivalent
to det, and let π ∈ [n] × [n] be the output of algorithm 6.5 for f . Then f(π(X)) is
SCn-equivalent to det.

Proof. The basic idea is to group variables by their row and column. Lemma 6.2 justifies
this approach. Let f ∈ C[X11, . . . , Xnn] be PSn-equivalent to det via f(X11, . . . , Xnn) =
det(λ11Xσ(1,1), . . . , λnnXσ(n,n)). By lemma 6.2, the set

A :=

{
(i, j) ∈ [n]× [n] | (i, j) 6= (1, 1) ∧ ∂2f

∂x11xij
= 0

}
consists of the indices (i, j) s.t. σ(i, j) is in the same row or in the same column as
σ(1, 1).
Permutation of rows and columns only change the determinant up to a sign, so we may
permute rows and columns in such a way that σ(1, 1) = (1, 1). As a consequence we get
that, if we take any (i, j) ∈ A its image σ(i, j) is either in the first row or in the first
column of the matrix X.
We can thus partition A into indices that correspond to the first row and to the first
column. We can find the partition A into a set R and a set C that correspond to the
first row and first column respectively, by checking second order partial derivatives. Let
(i, j), (k, l) ∈ A, then

∂2f

∂xijxkl
= 0

if and only if σ(i, j) is either in the same row or in the same column as σ(k, l). From
this we can easily construct R and C. A semantic of description of R and C:

R = {(i, j) ∈ A | (i, j) 6= (1, 1) ∧ σ(i, j) = (1, k) for some k}
C = {(i, j) ∈ A | (i, j) 6= (1, 1) ∧ σ(i, j) = (k, 1) for some k}

Also the determinant does not change under transposition of the input matrix, so it does
not matter which of the sets corresonds to the first row or column. This justifies the
assignments in step (IV).
For every other index (i, j) ∈ [n] × [n] \ A we can then determine the row and column
of σ(i, j) by finding the unique indices index (iR, jR) ∈ R and (iC , jC) with

∂2f

∂xij∂xiRjR
=

∂2f

∂xij∂xiCjC
= 0.

The association works in the following way:
If σ(iR, jR) = (1, l) and σ(iC , jC) = (k, 1), we deduce σ(i, j) = (k, l).

What now remains of our proble is an equivalence transformation of the form

f

X11 . . . X1n
...

. . .
...

Xn1 . . . Xnn

 = det

λ11X11 . . . λ1nX1n
...

. . .
...

λn1Xn1 . . . λnnXnn
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Thus evaluating f at a permutation matrix yields a product of the λij, namely f(Pσ) =∏n
i=1 λiσ(i), where Pσ is the permutation matrix defined as

Pσ = (pij)1≤i,j≤n =

{
1 if σ(i) = j,

0 else

By choosing the permutations in a smart way we can solve for the λij.

Algorithm 6.6 Resolve SCn-equivalence

Input: f ∈ C[X11, . . . , Xnn]

Output: If f is SCn-equivalent to detn, return matrix B ∈ SCn, s.t. f(X) =
detn(BX).

Step (i): Set λ11 = λ12 = . . . = λ1n = λ21 = . . . = λ(n−1)1 = 1

Step (ii): For i ∈ [n− 1] and j ∈ [n], choose k 6= 1, i, j and define

σ(x) =


j if x = i,

k if x = j,

i if x = k,

x else

, π(x) =



j if x = 1,

k if x = j,

i if x = k,

1 if x = i,

x else

Then set λij = − f(Pσ)
f(Pπ)

Step (iii): For j ∈ [n− 1] define c := λjn
∏

i∈[n−1]:i 6=j λii and define

τ(x) =

{
n if x = j,

j if x = n

Set λnj = −f(Pτ )
c

.

Step (iv): Set λnn = f(In)∏
i<n λii

and return B := diag (λ11, . . . , λnn).

Proposition 6.4 ([Kay12, Proposition 42]). Let f ∈ C[X11, . . . , Xnn] be a polynomial
that is SCn-equivalent to the determinant, i.e. ∃λ11, . . . , λnn ∈ C, s.t.

f(X11, . . . , Xnn) = det(λ11X11, . . . , λnnXnn)

Then algorithm 6.6 computes the λij in polynomial time.

Proof. Let f ∈ C[X11, . . . , Xnn] be SCn-equivalent to det, i.e. f(X11, . . . , Xnn) =
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det(λ11X11, . . . , λnnXnn). Define Λ := diag (λ11, . . . , λnn) and the matrices

U :=



∏n
j=2 λ

−1
1j λ

−1
11

. . . ∏n
j=2 λ

−1
1j λ

−1
(n−1)1 (∏n

j=2 λ1j

)n−1∏n−1
i=1 λi1

 ∈ Cn×n

V :=


∏n

j=2 λ1j
λ−112

. . .

λ−11n

 ∈ Cn×n

Then we get

det(U) =

(
n∏
j=2

λ−11j

)n−1

·

(
n−1∏
i=1

λ−1i1

)
·

((
n∏
j=2

λ1j

)n−1 n−1∏
i=1

λi1

)
= 1

det(V ) =

(
n∏
j=2

λ1j

)
· λ−112 · . . . · λ−11n = 1

Therefore U, V ∈ SLn. We conclude

f

X11 . . . X1n
...

. . .
...

Xn1 . . . Xnn

 = det

λ11X11 . . . λ1nX1n
...

. . .
...

λn1Xn1 . . . λnnXnn


= detU

λ11X11 . . . λ1nX1n
...

. . .
...

λn1Xn1 . . . λnnXnn

V

= detU


∏n

j=2 λ1jλ11X11 X12 . . . X1n∏n
j=2 λ1jλ21X21 ∗ . . . ∗

...
...

. . .
...∏n

j=2 λ1jλn1Xn1 ∗ . . . ∗



= det


X11 . . . X1n

X21 ∗ . . . ∗
...

...
. . .

...
X(n−1)1 ∗ . . . ∗
∗Xn1 ∗ . . . ∗


Therefore we can assume λ11 = . . . = λ1n = λ21 = . . . = λ(n−1)1 = 1. This assumption is
crucial, as it allows us to find permuations σ, π, s.t. if we evaluate at their corresponding
permuation matrices Pσ, Pπ we can divide their results and get one of the λij.
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Let i ∈ [n− 1], j ∈ [n] and σ, π ∈ Sn×n as defined in step (II), then we get

f(Pσ) = det(Λ.Pσ) = sgn (σ)
n∏

m=1

λmσ(m)

= λijλjkλki
∏

m6=i,j,k

λmm =︸︷︷︸
λ11=1

λijλjkλki
∏

m6=1,i,j,k

λmm

f(Pπ) = det(Λ.Pπ) = sgn (π)
n∏

m=1

λmπ(m)

= sgn (π)λ1jλjkλkiλi1
∏

m 6=1,i,j,k

λmm =︸︷︷︸
λ1j=λi1=1

−sgn (σ)λjkλki
∏

m6=1,i,j,k

λmm

We conclude λij = − f(Pσ)
f(Pπ)

.

Let i = n and j ∈ [n− 1]. Define c = λjn
∏

m6=j λmm. and τ as in step (III). Then

f(Pτ ) = −λjnλnj
∏
m 6=j,n

λmm

and therefore λnj = −f(Pτ )
c

.

We know that f(In) =
∏n

i=1 λii, therefore λnn = f(In)∏
i<n λii

as in step (IV).

This yields that algorithm 6.6 works correct. The number of evaluations of f at permu-
tation matrices is O(n2), thus we get polynomial running time.

The last step is to combine all the previous algorithms. We have seen, that we can
reduce GLn equivalence to PSn equivalence, then to SCn equivalence and finally find all
scaling factors. There might exist polynomials that are not equivalent to det but their
Lie algebra gf is still conjugate to gdet . To find such errors in the computation, we check
if the matrix A that we get does indeed yield equivalence to det via the Schwartz-Zippel-
Lemma.

Algorithm 6.7 Resolve GL-equivalence for det

Input: f ∈ C[X11, . . . , Xnn]

Output: If f is equivalent to detn, then return a matrix A ∈ Cn2×n2
, s.t.

f(X) = detn(AX)

Step (i): Calculate a matrix D ∈ Cn2×n2
s.t. f(DX) = detn(X) using algo

6.4. Define f2(X) := f(DX).

Step (ii): Calculate a matrix C ∈ Cn2×n2
s.t. f2(CX) = detn(X) using algo

6.5. Define f3(X) := f(CX).

Step (iii): Calculate a matrix B ∈ Cn2×n2
s.t. f3(X) = detn(BX) using algo

6.6.

Step (iv): Define A := BC−1D−1. Use Schwartz Zippel Lemma to check if
f(X) = detn(AX). If this is the case, return A, else return ’not

equivalent to determinant’.
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Theorem 6.5. With high probability algorithm 6.7 solves the equivalence problem for
the determinant in polynomial time.

Proof. Let f ∈ C[X1, . . . , Xn] s.t. f is equivalent to the determinant, i.e. f(X) =
det(AX) for some A ∈ GLn.
Let D be the matrix calulated in step (I), by proposition 6.1, f2(X) = f(DX) is PSn-
equivalent to det.
Hence we can continue to compute the matrix C in step (II). f3(X) = f2(CX) is
SCn-equivalent to det (Proposition 6.3).
Proposition 6.4 states that the matrix B computed in step (III) fullfills

det(BX) = f3(X) = f2(CX) = f(DCX).

The matrix A = BC−1D−1 yields

det(AX) = det(BC−1D−1X) = f3(C
−1D−1X) = f2(CC

−1D−1X)

= f2(D
−1X) = f(DD−1X) = f(X).

Therefore the algorithm yields a correct solution.

The algorithm uses random choices in several places, for calculating a basis for the Lie
algebra of the input polynomial f , the choice of a random matrix B ∈ gf and the final
identity test. The probability of an error in any of these steps can be bounded by an
application of the Schwartz-Zippel-Lemma (corollary 2.8).
Formally the algorithm is a Monte Carlo algorithm, even though the final step yields a
correctness test, it is still a probabilistic test.
If polynomial identity testing is derandomized at some point, the algorithm can be seen
as a Las Vegas algorithm.
What remains as a problem is the unsolved existence of a matrix diagonalization algo-
rithm, without diagonalization, the algorithm can not solve the PolyEquiv problem.
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Appendix

Deutsche Zusammenfassung

Die algebraische Komplexitätstheorie beschäftigt sich mit der Komplexität von Proble-
men in einem algebraischen/arithmetischen Kontext, wie beispielsweise der möglichst
effizienten Berechnung von Polynomen. Komplexität in diesem Kontext bezieht sich
meistens auf die Anzahl an arithmetischen Operation (+, −, ·, /).
Ähnlich den Reduktionen in der (Standard-)Komplexitätstheorie untersucht man in
der algebraischen Komplexitätstheorie sogenannte p-Projektionen (siehe [BCS97] oder
[Bür00]). In dieser Arbeit behandle ich sogenannte Polynomäquivalenzen, dies sind li-
neare Abbildung (gegeben durch eine invertiebare Matrix A ∈ GLn). Zwei Polynome
f, g ∈ C[X1, . . . , Xn] heißen äquivalent falls eine Matrix A ∈ GLn existiert, sodass

f(X) = g(A ·X)

ist.
In dieser Arbeit beschäftige ich mich mit dem Äquivalenzproblem für das Determinan-
tenpolynom.
Die Grundlage für diese Arbeit ist das Paper

”
Affine projections of polynomials“ ([Kay12])

von Neeraj Kayal. Unter der Annahme, dass Matrixdiagonalisierung mit polynomiellem
Zeitaufwand bzgl. der Dimension der Eingabematrix möglich ist, konnte Neeraj Kayal in
seiner Arbeit einen randomisierten Algorithmus entwickeln, der das Äquivalenzproblem
für die Determinante in polynomieller Zeit löst.
In dieser Arbeit werden die Ergebnisse und der Algorithmus von Neeraj Kayal präsentiert
und anhand der Lie-Theorie von Grund auf hergeleitet. Abschnitt 1 enthält eine erwei-
terte Einführung in das Problem und eine Zusammenfassung des Algorithmus.
Im zweiten Abschnitt werden fortgeschrittene Konzepte über Polynome entwickelt und
der dritte Abschnitt dient als Einführung für Matrix-Lie-Gruppen und Lie-Algebren.
Im Abschnitt 4 werden verschiedene Zwischenergebnisse von Kayal auf Basis der Matrix-
Lie-Gruppen und deren Lie-Algebren entwickelt. Diese Zwischenergebnisse dienen als
Grundlage um die Korrektheit des Algorithmus herzuleiten.
Abschnitt 5 enthält eine Zusammenfassung der verwendenten Unterprozeduren und de-
ren Korrektheitsbeweise.
Im sechsten Abschnitt wird der komplette Algorithmus in drei Teilschritten präsentiert
und deren Korrektheit bewiesen.
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